Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to prov...Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to provide theoretical basis and reference for thermal comfortable air conditioning system design of high and large space buildings.Taking a theatre in Hainan as study object,a newly composite enhanced natural ventilation system is proposed by integrating theu nderground tunnel-based earth to air heat exchange system and the solar chimney.Ventilationq uantity,air velocity and air temperature field,human vertical temperature gradient differenceu nder24simulation working conditions are considered and analyzed by using ANSYS Fluent.Fort he underground tunnel,results show that Group Two with double underground tunnels and side airs upply location shows its advantages in cooling effects and air supply uniformity.Then for the solar chimney,results show that the solar radiation intensity contributes to larger difference int ransmission power and leads to different cooling effects.On the whole,the system under workingc ondition No.7with120m long,side air supply,double underground tunnel and20m high,1mw ide,0.6°absorber plate angle solar chimney shows its priority in better comprehensive performance.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
The study of urban outdoor thermal environment was carried out in one of the mountainous cities by using geography information system(GIS) technique which is connected with predicting and evaluating models for the out...The study of urban outdoor thermal environment was carried out in one of the mountainous cities by using geography information system(GIS) technique which is connected with predicting and evaluating models for the outdoor thermal environment, monitoring data and simulating data. A prediction and evaluation system were set up. A typical mountainous city, i.e., Yunyang city in Chongqing in China, was taken as an example, its urbanization trend and population growth was predicted and evaluated. The heat island intensity and its trend were simulated, the temperature field, velocity field and the humidity field were analyzed. The results show that GIS is an effective tool to deal with the outdoor thermal environment, especially for the mountainous cities with special geographical particularities. GIS can be used in the environmental management and the city planning especially for the mountainous cities.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham...This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.展开更多
The purpose of this study is to demonstrate the effect localized heating of the feet has on physiological and psychological reactions of female in an air-conditioned environment in summer. In Japan, female office work...The purpose of this study is to demonstrate the effect localized heating of the feet has on physiological and psychological reactions of female in an air-conditioned environment in summer. In Japan, female office workers wear less clothing than their male counterparts. In an air-conditioned office space in summer, female conducts thermoregulation by putting on cardigans, etc. but this action does not greatly contribute to improving conditions for the legs and feet, the lower extremities of the body. The improvement of sensational and physiological temperature by localized warming of the body can contribute to a healthy working environment for female office workers, their safety, and a reduction in air conditioning’s energy expenditure. We used the indoor thermal environment evaluation index ETF to investigate the effect localized heating of the feet has on human physiological and psychological response in an air-conditioned environment in summer. The result of heating by means of heat conduction via the sole of the foot was expressed more strongly as a psychological effect than as a whole-body physiological effect. Heating by means of heat conduction via the sole of the foot was a thermal environment factor that compensates for a low temperature in whole-body thermal sensation and whole-body thermal comfort. The effect of heating due to heat conduction via the sole of the foot was expressed in the change in sole-of- the-foot skin temperature. Applying slight heat conduction by means of heating via the sole of the foot demonstrated the result of improved whole-body thermal sensation and whole-body thermal comfort.展开更多
With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperatur...With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperature drop in storage tanks under actual dynamically changing environments, this paper considers the influence of dynamic thermal environment and internal crude oil physical properties on the fluctuating changes in crude oil temperature. A theoretical model of the unsteady-state temperature drop heat transfer process is developed from a three-dimensional perspective. According to the temperature drop variation law of crude oil storage tank under the coupling effect of various heat transfer modes such as external forced convection, thermal radiation, and internal natural convection, the external dynamic thermal environment influence zone, the internal crude oil physical property influence zone, and the intermediate transition zone of the tank are proposed. And the multiple non-linear regression method is used to quantitatively characterize the influence of external ambient temperature, solar radiation, wind speed, internal crude oil density, viscosity, and specific heat capacity on the temperature drop of crude oil in each influencing zone. The results of this paper not only quantitatively explain the main influencing factors of the oil temperature drop in the top, wall, and bottom regions of the tank, but also provide a theoretical reference for oil security reserves under a dynamic thermal environment.展开更多
With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies o...With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies of urban street thermal comfort.The urban heat island effect,environmental parameters,building layout,and green planting all have a significant impact on the thermal comfort of streets.Improvement strategies include optimizing cultivating pattern of plants,adjusting street layout,and improving paving materials of road.The multi-layer vegetation structure provides green shade,reduces local temperature,and humidifies the surrounding environment.It should adjust the street orientation and aspect ratio to provide sunlight and ventilation,and reduce ambient temperature.Paving materials with low reflectivity and light color and permeable underlying surface should be chosen to reduce heat absorption,increase shading and greenery,and improve thermal comfort.展开更多
In order to study the thermal environment of rural dwellings in cold areas,the physical environment of rural dwellings in the Guanzhong region was taken as the research object.The thermal environment parameters,such a...In order to study the thermal environment of rural dwellings in cold areas,the physical environment of rural dwellings in the Guanzhong region was taken as the research object.The thermal environment parameters,such as indoor and outdoor temperature and humidity,wall surface temperature of existing dwellings were measured,recorded,and analysed using physical environment measurements and numerical software simulations.By using Ecotect Analysis software to optimize the building envelope of existing residential buildings,the thermal analysis shows that the optimized building envelope reduces the heat transfer coefficient,increases thermal insulation,reduces building energy consumption by 59%,and increases the human comfort PMV from-2.01 to-1.40.These findings provide theoretical and data support for the construction of rural dwellings in cold regions and for research into thermal environments.展开更多
The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewa...The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.展开更多
In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants ...In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants in the typical classrooms are studied by 180 questionnaires.Then,based on the measured data,the temperature changes in the classrooms during a year are simulated by the DeST software.The results show that the indoor thermal environments in the northern classrooms on the first floor are better than those in other classrooms.And the measurement results accord with the simulation results.These results can be used as a reference for the study of the indoor thermal environments in other seasons.展开更多
A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate ...A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate and resources.This paper examines the principles of climate adaptability embedded in the site layout and spatial organization characteristics of traditional cave dwelling villages in northern Shaanxi Province.The extracted climate adaptability principles are summarized,and the resulting design strategies that are well-suited to the contemporary urban space form are presented.Through analysis,it can be observed that traditional cave dwelling villages in northern Shaanxi are predominantly situated on south-facing slopes in proximity to water at low altitudes.These villages are characterized by compact building groups and east-west development,which is constrained by the elements of mountains and rivers.A two-level street system is generated,comprising streets parallel to the contour line and roadways perpendicular to the contour line.This results in the formation of a courtyard form enclosed by mountains.Such site layout and spatial organization exhibit excellent climate adaptability with regard to heat,ventilation,and wind storage.In light of the aforementioned considerations,the following urban spatial form design strategies are put forth:①the topographic height difference can be exploited to obtain sufficient sunshine;②the group shape can be optimized in order to reduce building energy consumption;③the best orientation of the building can be chosen to take account of both winter and summer conditions;④the height and length can be combined in order to form natural masking;⑤the D/H ratio of streets and roadways should be controlled to achieve a balance between heat gain and cooling of groups;⑥vents should be set appropriately to optimize group ventilation;⑦climate buffers should be established to increase the level of climate response.展开更多
Urban waterfront human settlements have gradually become a hot topic for research in recent years.Using CiteSpace,597 publications from 2017 to 2023 that were retrieved from the Web of Science were analyzed and sorted...Urban waterfront human settlements have gradually become a hot topic for research in recent years.Using CiteSpace,597 publications from 2017 to 2023 that were retrieved from the Web of Science were analyzed and sorted out,and the following characteristics were found:(1)The research hotspots transitioned from thermal comfort evaluation to the functional mechanism of water bodies,and then to the impact on the environment and residents’behavior.(2)The integration of disciplines has promoted the diversification of perspectives on urban waterfront human settlements,and the content has become more concentrated in interdisciplinary fields.Research on corresponding technology and methods of urban waterfront human settlement has improved,and so has the extensiveness of the experiments.(3)The research on urban waterfront human settlement from the perspective of ecology has been improving.The research focuses more on the harmonious coexistence of ecological and cultural values and human beings.展开更多
The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct ...The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.展开更多
In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. S...In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.展开更多
Urbanization,especially urban land expansion,has a profound influence on the urban thermal environment.Cities in Northeast China face remarkably uneven development and environmental issues,and thus it is necessary to ...Urbanization,especially urban land expansion,has a profound influence on the urban thermal environment.Cities in Northeast China face remarkably uneven development and environmental issues,and thus it is necessary to strengthen the diagnosis of thermal environmental pressure brought by urbanization.In this study,multi remote sensing imageries and statistical approaches,involving piecewise linear regression(PLR),were used to explore urban expansion and its effects on the thermal environment of Changchun City in Jilin Province,China.Results show that Changchun experienced rapid urban expansion from 2000 to 2020,with urban built-up areas increasing from 171.77 to 525.14 km^(2).The area of the city’s urban heat island(UHI)increased dramatically,during both day and night.Using PLR,a positive linear correlation of built-up density with land surface temperature(LST)was detected,with critical breakpoints of 70%-80%during the daytime and 40%-50%at nighttime.Above the thresholds,the magnitude of LST in response to built-up density significantly increased with intensifying urbanization,especially for nighttime LST.An analysis of the relative frequency distributions(RFDs)of LST reveals that rapid urbanization resulted in a significant increase of mean LST in newly urbanized areas,but had weak effects on daytime LST change in existing urban area.Urban expansion also contributed to a constant decrease of spatial heterogeneity of LST in existing urban area,especially at daytime.However,in newly urbanized areas,the spatial heterogeneity of LST was decreased during the daytime but increased at nighttime due to urbanization.展开更多
The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick...The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.展开更多
The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration charact...The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.展开更多
This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived u...This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.展开更多
基金Sponsored by the National Natural Science Foundation of Guangdong Province(Grant No.2020A1515011092)the Open Projects Fund of KeyL aboratory of Ecology and Energy-saving Study of Dense Habitat(Tongji University),Ministry of Education(Grant No.2020030105)。
文摘Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to provide theoretical basis and reference for thermal comfortable air conditioning system design of high and large space buildings.Taking a theatre in Hainan as study object,a newly composite enhanced natural ventilation system is proposed by integrating theu nderground tunnel-based earth to air heat exchange system and the solar chimney.Ventilationq uantity,air velocity and air temperature field,human vertical temperature gradient differenceu nder24simulation working conditions are considered and analyzed by using ANSYS Fluent.Fort he underground tunnel,results show that Group Two with double underground tunnels and side airs upply location shows its advantages in cooling effects and air supply uniformity.Then for the solar chimney,results show that the solar radiation intensity contributes to larger difference int ransmission power and leads to different cooling effects.On the whole,the system under workingc ondition No.7with120m long,side air supply,double underground tunnel and20m high,1mw ide,0.6°absorber plate angle solar chimney shows its priority in better comprehensive performance.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
基金Project (50278099) supported by the National Natural Science Foundation of China
文摘The study of urban outdoor thermal environment was carried out in one of the mountainous cities by using geography information system(GIS) technique which is connected with predicting and evaluating models for the outdoor thermal environment, monitoring data and simulating data. A prediction and evaluation system were set up. A typical mountainous city, i.e., Yunyang city in Chongqing in China, was taken as an example, its urbanization trend and population growth was predicted and evaluated. The heat island intensity and its trend were simulated, the temperature field, velocity field and the humidity field were analyzed. The results show that GIS is an effective tool to deal with the outdoor thermal environment, especially for the mountainous cities with special geographical particularities. GIS can be used in the environmental management and the city planning especially for the mountainous cities.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
基金Project supported by the National Natural Science Foundation of China(No.11972082)。
文摘This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.
文摘The purpose of this study is to demonstrate the effect localized heating of the feet has on physiological and psychological reactions of female in an air-conditioned environment in summer. In Japan, female office workers wear less clothing than their male counterparts. In an air-conditioned office space in summer, female conducts thermoregulation by putting on cardigans, etc. but this action does not greatly contribute to improving conditions for the legs and feet, the lower extremities of the body. The improvement of sensational and physiological temperature by localized warming of the body can contribute to a healthy working environment for female office workers, their safety, and a reduction in air conditioning’s energy expenditure. We used the indoor thermal environment evaluation index ETF to investigate the effect localized heating of the feet has on human physiological and psychological response in an air-conditioned environment in summer. The result of heating by means of heat conduction via the sole of the foot was expressed more strongly as a psychological effect than as a whole-body physiological effect. Heating by means of heat conduction via the sole of the foot was a thermal environment factor that compensates for a low temperature in whole-body thermal sensation and whole-body thermal comfort. The effect of heating due to heat conduction via the sole of the foot was expressed in the change in sole-of- the-foot skin temperature. Applying slight heat conduction by means of heating via the sole of the foot demonstrated the result of improved whole-body thermal sensation and whole-body thermal comfort.
基金supported by the National Natural Science Foundation of China(52104064)(52074089)the China Postdoctoral Science Foundation(2020M681074)+3 种基金Heilongjiang Provincial Natural Science Foundation of China(YQ2023E006)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020152)Postdoctoral Science Foundation of Heilongjiang Province in China(LBH-TZ2106)(LBH-Z20122)Northeast Petroleum University Talents Introduction Fund(2019KQ18).
文摘With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperature drop in storage tanks under actual dynamically changing environments, this paper considers the influence of dynamic thermal environment and internal crude oil physical properties on the fluctuating changes in crude oil temperature. A theoretical model of the unsteady-state temperature drop heat transfer process is developed from a three-dimensional perspective. According to the temperature drop variation law of crude oil storage tank under the coupling effect of various heat transfer modes such as external forced convection, thermal radiation, and internal natural convection, the external dynamic thermal environment influence zone, the internal crude oil physical property influence zone, and the intermediate transition zone of the tank are proposed. And the multiple non-linear regression method is used to quantitatively characterize the influence of external ambient temperature, solar radiation, wind speed, internal crude oil density, viscosity, and specific heat capacity on the temperature drop of crude oil in each influencing zone. The results of this paper not only quantitatively explain the main influencing factors of the oil temperature drop in the top, wall, and bottom regions of the tank, but also provide a theoretical reference for oil security reserves under a dynamic thermal environment.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043).
文摘With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies of urban street thermal comfort.The urban heat island effect,environmental parameters,building layout,and green planting all have a significant impact on the thermal comfort of streets.Improvement strategies include optimizing cultivating pattern of plants,adjusting street layout,and improving paving materials of road.The multi-layer vegetation structure provides green shade,reduces local temperature,and humidifies the surrounding environment.It should adjust the street orientation and aspect ratio to provide sunlight and ventilation,and reduce ambient temperature.Paving materials with low reflectivity and light color and permeable underlying surface should be chosen to reduce heat absorption,increase shading and greenery,and improve thermal comfort.
基金supported by the National Natural Science Foundation of China(Grant No.51808428)the Social Science Foundation of Shaanxi Province(Grant No.2022J175)。
文摘In order to study the thermal environment of rural dwellings in cold areas,the physical environment of rural dwellings in the Guanzhong region was taken as the research object.The thermal environment parameters,such as indoor and outdoor temperature and humidity,wall surface temperature of existing dwellings were measured,recorded,and analysed using physical environment measurements and numerical software simulations.By using Ecotect Analysis software to optimize the building envelope of existing residential buildings,the thermal analysis shows that the optimized building envelope reduces the heat transfer coefficient,increases thermal insulation,reduces building energy consumption by 59%,and increases the human comfort PMV from-2.01 to-1.40.These findings provide theoretical and data support for the construction of rural dwellings in cold regions and for research into thermal environments.
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.
文摘In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants in the typical classrooms are studied by 180 questionnaires.Then,based on the measured data,the temperature changes in the classrooms during a year are simulated by the DeST software.The results show that the indoor thermal environments in the northern classrooms on the first floor are better than those in other classrooms.And the measurement results accord with the simulation results.These results can be used as a reference for the study of the indoor thermal environments in other seasons.
基金Sponsored by Beijing Urban Governance Research Base of North China University of Technology(2024CSZL07).
文摘A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate and resources.This paper examines the principles of climate adaptability embedded in the site layout and spatial organization characteristics of traditional cave dwelling villages in northern Shaanxi Province.The extracted climate adaptability principles are summarized,and the resulting design strategies that are well-suited to the contemporary urban space form are presented.Through analysis,it can be observed that traditional cave dwelling villages in northern Shaanxi are predominantly situated on south-facing slopes in proximity to water at low altitudes.These villages are characterized by compact building groups and east-west development,which is constrained by the elements of mountains and rivers.A two-level street system is generated,comprising streets parallel to the contour line and roadways perpendicular to the contour line.This results in the formation of a courtyard form enclosed by mountains.Such site layout and spatial organization exhibit excellent climate adaptability with regard to heat,ventilation,and wind storage.In light of the aforementioned considerations,the following urban spatial form design strategies are put forth:①the topographic height difference can be exploited to obtain sufficient sunshine;②the group shape can be optimized in order to reduce building energy consumption;③the best orientation of the building can be chosen to take account of both winter and summer conditions;④the height and length can be combined in order to form natural masking;⑤the D/H ratio of streets and roadways should be controlled to achieve a balance between heat gain and cooling of groups;⑥vents should be set appropriately to optimize group ventilation;⑦climate buffers should be established to increase the level of climate response.
文摘Urban waterfront human settlements have gradually become a hot topic for research in recent years.Using CiteSpace,597 publications from 2017 to 2023 that were retrieved from the Web of Science were analyzed and sorted out,and the following characteristics were found:(1)The research hotspots transitioned from thermal comfort evaluation to the functional mechanism of water bodies,and then to the impact on the environment and residents’behavior.(2)The integration of disciplines has promoted the diversification of perspectives on urban waterfront human settlements,and the content has become more concentrated in interdisciplinary fields.Research on corresponding technology and methods of urban waterfront human settlement has improved,and so has the extensiveness of the experiments.(3)The research on urban waterfront human settlement from the perspective of ecology has been improving.The research focuses more on the harmonious coexistence of ecological and cultural values and human beings.
基金supported by National Natural Science Foundation of China(Grant No.51375170)Open Fund of State Key Lab of Environmental Adaptability for Industrial Products of China
文摘The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.
基金supported by the National Natural Science Foundation of China(41205126 and 41475085)Anhui Provincial Natural Science Foundation(1408085MKL60 and1508085MD64)Meteorological Research Fund of Anhui Meteorological Bureau(KM201520)
文摘In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.
基金Under the auspices of the Natural Science Foundation of Jilin Province(No.20200201048JC)。
文摘Urbanization,especially urban land expansion,has a profound influence on the urban thermal environment.Cities in Northeast China face remarkably uneven development and environmental issues,and thus it is necessary to strengthen the diagnosis of thermal environmental pressure brought by urbanization.In this study,multi remote sensing imageries and statistical approaches,involving piecewise linear regression(PLR),were used to explore urban expansion and its effects on the thermal environment of Changchun City in Jilin Province,China.Results show that Changchun experienced rapid urban expansion from 2000 to 2020,with urban built-up areas increasing from 171.77 to 525.14 km^(2).The area of the city’s urban heat island(UHI)increased dramatically,during both day and night.Using PLR,a positive linear correlation of built-up density with land surface temperature(LST)was detected,with critical breakpoints of 70%-80%during the daytime and 40%-50%at nighttime.Above the thresholds,the magnitude of LST in response to built-up density significantly increased with intensifying urbanization,especially for nighttime LST.An analysis of the relative frequency distributions(RFDs)of LST reveals that rapid urbanization resulted in a significant increase of mean LST in newly urbanized areas,but had weak effects on daytime LST change in existing urban area.Urban expansion also contributed to a constant decrease of spatial heterogeneity of LST in existing urban area,especially at daytime.However,in newly urbanized areas,the spatial heterogeneity of LST was decreased during the daytime but increased at nighttime due to urbanization.
基金Project(2011BAJ03B13) supported by the National Key Technologies R&D Program of China
文摘The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.
基金supported by the National Natural Science Foundation of China(No.51805341)the Natural Science Foundation of Jiangsu Province(No.BK20180843).
文摘The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.
文摘This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.