The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr...In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.展开更多
A method for improving accuracy of CNC machine tools through compensation for the thermal errors is studied. The thermal errors are obtained by 1 D ball array and characterized by an auto regressive model based on sp...A method for improving accuracy of CNC machine tools through compensation for the thermal errors is studied. The thermal errors are obtained by 1 D ball array and characterized by an auto regressive model based on spindle rotation speed. By revising the workpiece NC machining program, the thermal errors can be compensated before machining. The experiments on a vertical machining center show that the effectiveness of compensation is good.展开更多
Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to ...Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.展开更多
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea...Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t...Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.展开更多
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys...A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.展开更多
The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of ...The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.展开更多
The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables gro...The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables grouping technique is improved.Temperature variables are sorted according to their relativities with the thermal errors.The representative temperature variables are determined by analyzing the variable correlation in sort order and removing the other variables in the same group.Considering the diverse effect of importing the different variables on thermal error model,the method of variable combination optimization is improved.Regression models made up of different combination of representative temperature variables are evaluated by the index of both the determined coefficient and the average residual squares to select the combination of the temperature variables.For the machine tools with complicated structures which need more initial temperature measuring points the improvement is demanded.The improved approach is applied to a precision horizontal machining center to identify the key thermal points.Experimental results show that the proposed approach is capable of avoiding the high correlation among the different groups' variables,effectively reducing the number of the key thermal points without depressing the prediction accuracy of the thermal error model for machine tools.展开更多
As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are an...As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are analyzed in detail and the vista of the error compensation in precision and ultra precision machines is discussed.展开更多
Analyses the errors of new parallel machine tools and presents a structural scheme for feedback compensation of machine tools to eliminate these errors, the theory behind and the relation between direction consine of ...Analyses the errors of new parallel machine tools and presents a structural scheme for feedback compensation of machine tools to eliminate these errors, the theory behind and the relation between direction consine of normal vector of the workpiece surface and the rotation angles α,β,γ of the cutter head.展开更多
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit...Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.展开更多
Thermally induced spindle angular errors of a machine tool are important factors that affect the machining accuracy of parts.It is critical to develop models with good generalization abilities to control these angular...Thermally induced spindle angular errors of a machine tool are important factors that affect the machining accuracy of parts.It is critical to develop models with good generalization abilities to control these angular thermal errors.However,the current studies mainly focus on the modeling of linear thermal errors,and an angular thermal error model applicable to different working conditions has rarely been investigated.Furthermore,the formation mechanism of the angular thermal error remains to be studied.In this study,an analytical modeling method was proposed by analyzing the formation and propagation chain of the spindle angular thermal errors of a five-axis computer numerical control(CNC)machine tool.The effects of the machine tool structure and position were considered in the modeling process.The angular thermal error equations were obtained by analyzing the spatial thermoelastic deformation states.An analytical model of the spindle angular thermal error was established based on the geometric relation between thermal deformations.The model parameters were identified using the trust region least squares method.The results showed that the proposed analytical model exhibited good generalization ability in predicting spindle pitch angular thermal errors under different working conditions with variable spindle rotational speeds,spindle positions,and environmental temperatures in different seasons.The average mean absolute error(MAE),root mean square error(RMSE)and R2 in twelve different experiments were 4.7μrad,5.6μrad and 0.95,respectively.This study provides an effective method for revealing the formation mechanism and controlling the spindle angular thermal errors of a CNC machine tool.展开更多
热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional lon...热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。展开更多
Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key t...Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key temperature measurement point(TMP)selection are the bases of thermal error modeling and compensation for CNC machine tools.Compared with small-and medium-sized CNC machine tools,heavy-duty CNC machine tools require the use of more temperature sensors to measure their temperature comprehensively because of their larger size and more complex heat sources.However,the presence of many TMPs counteracts the movement of CNC machine tools due to sensor cables,and too many temperature variables may adversely influence thermal error modeling.Novel temperature sensors based on fiber Bragg grating(FBG)are developed in this study.A total of 128 FBG temperature sensors that are connected in series through a thin optical fiber are mounted on a heavy-duty CNC machine tool to monitor its temperature field.Key TMPs are selected using these large-scale FBG temperature sensors by using the density-based spatial clustering of applications with noise algorithm to reduce the calculation workload and avoid problems in the coupling of TMPs for thermal error modeling.Back propagation neural network thermal error prediction models are established to verify the performance of the proposed TMP selection method.Results show that the number of TMPs is reduced from 128 to 5,and the developed model demonstrates good prediction effects and strong robustness under different working conditions of the heavy-duty CNC machine tool.展开更多
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
文摘In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.
文摘A method for improving accuracy of CNC machine tools through compensation for the thermal errors is studied. The thermal errors are obtained by 1 D ball array and characterized by an auto regressive model based on spindle rotation speed. By revising the workpiece NC machining program, the thermal errors can be compensated before machining. The experiments on a vertical machining center show that the effectiveness of compensation is good.
基金supported by Jiangsu Provincial Prospective Joint Research Foundation for Industry-University-Research of China (Grant No. BY2009102)Henan Provincial Major Scientific and Technological Projects of China (Grant No. 102102210050)
文摘Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.
基金Supported by National Natural Science Foundation of China(Grant No.51305244)Shandong Provincal Natural Science Foundation of China(Grant No.ZR2013EEL015)
文摘Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
基金Supported by Key Project of National Natural Science Fund of China(Grant No.51490660/51490661)National Natural Science Foundation of China(Grant No.51175142)
文摘Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.
文摘A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.
文摘The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.
基金Sponsored by the Special Fund for Scientific and Technological Achievement Transformation of Jiangsu Provincethe Basic Scientific Research Professional Expense of NUAA for Special Project
文摘The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables grouping technique is improved.Temperature variables are sorted according to their relativities with the thermal errors.The representative temperature variables are determined by analyzing the variable correlation in sort order and removing the other variables in the same group.Considering the diverse effect of importing the different variables on thermal error model,the method of variable combination optimization is improved.Regression models made up of different combination of representative temperature variables are evaluated by the index of both the determined coefficient and the average residual squares to select the combination of the temperature variables.For the machine tools with complicated structures which need more initial temperature measuring points the improvement is demanded.The improved approach is applied to a precision horizontal machining center to identify the key thermal points.Experimental results show that the proposed approach is capable of avoiding the high correlation among the different groups' variables,effectively reducing the number of the key thermal points without depressing the prediction accuracy of the thermal error model for machine tools.
文摘As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are analyzed in detail and the vista of the error compensation in precision and ultra precision machines is discussed.
文摘Analyses the errors of new parallel machine tools and presents a structural scheme for feedback compensation of machine tools to eliminate these errors, the theory behind and the relation between direction consine of normal vector of the workpiece surface and the rotation angles α,β,γ of the cutter head.
基金supported by the National Natural Science Foundation of China(Nos.52005413,52022082)Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JM-054)the Fundamental Research Funds for the Central Universities(No.D5000220135)。
文摘Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.
基金This work is supported by the Science and Technology Program of Sichuan Province(Grant Nos.2019ZDZX0021 and 2020ZDZX0003)the Fundamental Research Funds for the Central Universities(Grant No.20826041D4254).
文摘Thermally induced spindle angular errors of a machine tool are important factors that affect the machining accuracy of parts.It is critical to develop models with good generalization abilities to control these angular thermal errors.However,the current studies mainly focus on the modeling of linear thermal errors,and an angular thermal error model applicable to different working conditions has rarely been investigated.Furthermore,the formation mechanism of the angular thermal error remains to be studied.In this study,an analytical modeling method was proposed by analyzing the formation and propagation chain of the spindle angular thermal errors of a five-axis computer numerical control(CNC)machine tool.The effects of the machine tool structure and position were considered in the modeling process.The angular thermal error equations were obtained by analyzing the spatial thermoelastic deformation states.An analytical model of the spindle angular thermal error was established based on the geometric relation between thermal deformations.The model parameters were identified using the trust region least squares method.The results showed that the proposed analytical model exhibited good generalization ability in predicting spindle pitch angular thermal errors under different working conditions with variable spindle rotational speeds,spindle positions,and environmental temperatures in different seasons.The average mean absolute error(MAE),root mean square error(RMSE)and R2 in twelve different experiments were 4.7μrad,5.6μrad and 0.95,respectively.This study provides an effective method for revealing the formation mechanism and controlling the spindle angular thermal errors of a CNC machine tool.
文摘热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51475347 and 51475343)the International Science and Technology Cooperation Program of China(Grant No.2015DFA70340)The contributions of all collaborators in the mentioned projects are also well-appreciated.
文摘Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key temperature measurement point(TMP)selection are the bases of thermal error modeling and compensation for CNC machine tools.Compared with small-and medium-sized CNC machine tools,heavy-duty CNC machine tools require the use of more temperature sensors to measure their temperature comprehensively because of their larger size and more complex heat sources.However,the presence of many TMPs counteracts the movement of CNC machine tools due to sensor cables,and too many temperature variables may adversely influence thermal error modeling.Novel temperature sensors based on fiber Bragg grating(FBG)are developed in this study.A total of 128 FBG temperature sensors that are connected in series through a thin optical fiber are mounted on a heavy-duty CNC machine tool to monitor its temperature field.Key TMPs are selected using these large-scale FBG temperature sensors by using the density-based spatial clustering of applications with noise algorithm to reduce the calculation workload and avoid problems in the coupling of TMPs for thermal error modeling.Back propagation neural network thermal error prediction models are established to verify the performance of the proposed TMP selection method.Results show that the number of TMPs is reduced from 128 to 5,and the developed model demonstrates good prediction effects and strong robustness under different working conditions of the heavy-duty CNC machine tool.