期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Synergistic effects of expandable graphite and dimethyl methyl phosphonate on the mechanical properties, fire behavior, and thermal stability of a polyisocyanurate-polyurethane foam 被引量:14
1
作者 Hu Xiangming Wang Deming Wang Shuailing 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期13-20,共8页
In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) ... In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP. 展开更多
关键词 Expandable graphite Dimethyl methyl phosphonate Fire behavior thermal stability PIR–PUR foam
下载PDF
Microstructure and Characterization of Capric-stearic Acid/Modified Expanded Vermiculite Thermal Storage Composites 被引量:1
2
作者 刘凤利 朱教群 +4 位作者 LIU Junhua MA Baoguo ZHOU Weibing LI Ruguang QIN Weigao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期296-304,共9页
In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface... In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs. 展开更多
关键词 organic expanded vermiculite capric-stearic acid eutectic form-stable composite PCMs thermal energy storage building envelope
下载PDF
Preparation and characterization of conducting polymer-coated thermally expandable microspheres 被引量:9
3
作者 Shu-Ying Chen Zhi-Cheng Sun +2 位作者 Lu-Hai Li Yong-Hao Xiao Yan-Min Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第3期658-662,共5页
The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. M... The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. Meanwhile, a novel type of functional and conductive thermal expandable microsphere was obtained through strongly covering the surface of microsphere by conductive polymers with the mass loading of 1.5%. The optimal conditions to prepare high foaming ratio and equally distributed microcapsules were investigated with AN-MMA-MA in the proportion of 70%/20%/10%(m/m/m), and 25 wt% of n-hexane in oil phase. The further investigation results showed that the unexpanded TEMs were about 30 μm in diameter and the maximum expansion ratio was nearly 125 times of original volume. The polypyrrole(PPy) was smoothly coated on the surface of the TEMs and the expansion property of PPy-coated TEMs was almost the same as the uncoated TEMs. Moreover, the structure and expanding performance of TEMs and PPy-coated TEMs were characterized by scanning electron microscopy(SEM), laser particle size analyzer and dilatometer(DIL). 展开更多
关键词 thermally expandable microspheres Suspension polymerization Conducting polymer Preparation Characterization Particle size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部