The curing mechanism of furfuryl alcohol and urea-formaldehyde furan resins was investigated using infrared spectroscopy(IR) technique.The curing productions of urea-formaldehyde furan resins modified with different a...The curing mechanism of furfuryl alcohol and urea-formaldehyde furan resins was investigated using infrared spectroscopy(IR) technique.The curing productions of urea-formaldehyde furan resins modified with different agents(i.e.sorbitol,polyester polyol,phenol and acetone) and the productions of incomplete curing were characterized by differential thermal analysis(DTA) and thermal gravity analysis(TG).The results indicate that except for polyester polyol,the other modifiers have little effect on the thermal strength of urea-formaldehyde furan resin.Furthermore,the thermal strength can be improved at a temperature of higher than 550℃.展开更多
Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and The...Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and Thermal Gravity(TG)analysis that the blended material was superior in thermal behaviors to the material made from either Nomex or Viscose FR filament,when the ratio of Nomex and Lenzing Viscose FR reached 80∶20,and excellent thermal properties were achieved with the value of Limiting Oxygen Index(LOI)up to 36.1%.Blending Nomex and Viscose FR filaments may be recommended for better fire retardant property of related fabric.展开更多
Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its...Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its full potential in production of energy, especially electricity generation due to its lower performance in terms of thermal efficiency. Algae (included Microalgae & Macroalgae) are widely used for multi-application developments such as fishery aquaculture, food/nutrient supplement, cosmetics, and biomass energy. Microalgae have been treated as the source of bio-fuel. In this paper, we selected the two types of freshwater microalgae "Chlorella Vulgaris" & "Spirulina" and macro algae (Laminariaceae) as the main materials and we analyzed TGA (thermal gravity analysis) and calorific values (heat of combustion). We found the calorific values are 1,000-5,000 KC/KG and TGA results show that the microalgae decrease rapidly after reached 300 ℃. The results in this paper will be used as a reference material for microalgae multi-oriental energy application and biomass composition proximate and ultimate research development in the future.展开更多
The potential combustion-supporting agents for three kinds of coals were selected according to the Thermal Gravity Analysis (TG). The TG analysis shows that the addition of FeCl3 can reduce the ignition point of clara...The potential combustion-supporting agents for three kinds of coals were selected according to the Thermal Gravity Analysis (TG). The TG analysis shows that the addition of FeCl3 can reduce the ignition point of clarain and fusain from Guangxi and also the raw coal from Xinwen. The combustion-supporting effect of FeCl3 on the clarain is quite obvious, with the maximum reduction of ignition point reaching 90 ℃ and that of the burn-out point reaching 95 ℃. What is more, it can make the coal burn more completely. The relationship between the amount of FeCl3 and the ig- nition point was also investigated and the optimum amount of FeCl3 obtained. When FeCl3 is added in doses of 6%, 4%, 2%, and 1%, the reduction of ignition point is proportional to the amount of agent. If 6% of FeCl3 is added, the combus- tion-supporting effect is very significant; while if only 1% of FeCl3 is added, the combustion-supporting effect can be negligible. Therefore the optimum amount of FeCl3 is between 3% and 6% for achieving an obvious combus- tion-supporting effect. In addition, the combustion supporting mechanism of FeCl3 was also studied, which is the com- bined action of chloride and iron in the compound.展开更多
文摘The curing mechanism of furfuryl alcohol and urea-formaldehyde furan resins was investigated using infrared spectroscopy(IR) technique.The curing productions of urea-formaldehyde furan resins modified with different agents(i.e.sorbitol,polyester polyol,phenol and acetone) and the productions of incomplete curing were characterized by differential thermal analysis(DTA) and thermal gravity analysis(TG).The results indicate that except for polyester polyol,the other modifiers have little effect on the thermal strength of urea-formaldehyde furan resin.Furthermore,the thermal strength can be improved at a temperature of higher than 550℃.
文摘Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and Thermal Gravity(TG)analysis that the blended material was superior in thermal behaviors to the material made from either Nomex or Viscose FR filament,when the ratio of Nomex and Lenzing Viscose FR reached 80∶20,and excellent thermal properties were achieved with the value of Limiting Oxygen Index(LOI)up to 36.1%.Blending Nomex and Viscose FR filaments may be recommended for better fire retardant property of related fabric.
文摘Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its full potential in production of energy, especially electricity generation due to its lower performance in terms of thermal efficiency. Algae (included Microalgae & Macroalgae) are widely used for multi-application developments such as fishery aquaculture, food/nutrient supplement, cosmetics, and biomass energy. Microalgae have been treated as the source of bio-fuel. In this paper, we selected the two types of freshwater microalgae "Chlorella Vulgaris" & "Spirulina" and macro algae (Laminariaceae) as the main materials and we analyzed TGA (thermal gravity analysis) and calorific values (heat of combustion). We found the calorific values are 1,000-5,000 KC/KG and TGA results show that the microalgae decrease rapidly after reached 300 ℃. The results in this paper will be used as a reference material for microalgae multi-oriental energy application and biomass composition proximate and ultimate research development in the future.
文摘The potential combustion-supporting agents for three kinds of coals were selected according to the Thermal Gravity Analysis (TG). The TG analysis shows that the addition of FeCl3 can reduce the ignition point of clarain and fusain from Guangxi and also the raw coal from Xinwen. The combustion-supporting effect of FeCl3 on the clarain is quite obvious, with the maximum reduction of ignition point reaching 90 ℃ and that of the burn-out point reaching 95 ℃. What is more, it can make the coal burn more completely. The relationship between the amount of FeCl3 and the ig- nition point was also investigated and the optimum amount of FeCl3 obtained. When FeCl3 is added in doses of 6%, 4%, 2%, and 1%, the reduction of ignition point is proportional to the amount of agent. If 6% of FeCl3 is added, the combus- tion-supporting effect is very significant; while if only 1% of FeCl3 is added, the combustion-supporting effect can be negligible. Therefore the optimum amount of FeCl3 is between 3% and 6% for achieving an obvious combus- tion-supporting effect. In addition, the combustion supporting mechanism of FeCl3 was also studied, which is the com- bined action of chloride and iron in the compound.