期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows
1
作者 Fletcher Wadsworth Suresh S. Muknahallipatna Khaled Ksaibati 《Journal of Intelligent Learning Systems and Applications》 2024年第2期107-142,共36页
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst... In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance. 展开更多
关键词 Convolutional Neural Networks Residual Networks Object Detection image Processing thermal Imaging
下载PDF
Fault Diagnosis of Industrial Motors with Extremely Similar Thermal Images Based on Deep Learning-Related Classification Approaches
2
作者 Hong Zhang Qi Wang +2 位作者 Lixing Chen Jiaming Zhou Haijian Shao 《Energy Engineering》 EI 2023年第8期1867-1883,共17页
Induction motors(IMs)typically fail due to the rate of stator short-circuits.Because of the similarity of the thermal images produced by various instances of short-circuit and the minor interclass distinctions between... Induction motors(IMs)typically fail due to the rate of stator short-circuits.Because of the similarity of the thermal images produced by various instances of short-circuit and the minor interclass distinctions between categories,non-destructive fault detection is universally perceived as a difficult issue.This paper adopts the deep learning model combined with feature fusion methods based on the image’s low-level features with higher resolution and more position and details and high-level features with more semantic information to develop a high-accuracy classification-detection approach for the fault diagnosis of IMs.Based on the publicly available thermal images(IRT)dataset related to condition monitoring of electrical equipment-IMs,the proposed approach outperforms the highest training accuracy,validation accuracy,and testing accuracy,i.e.,99%,100%,and 94%,respectively,compared with 8 benchmark approaches based on deep learning models and 3 existing approaches in the literature for 11-class IMs faults.Even the training loss,validation loss,and testing loss of the eleven deployed deep learning models meet industry standards. 展开更多
关键词 Induction motors fault diagnosis thermal images deep learning
下载PDF
Photovoltaic Cell Panels Soiling Inspection Using Principal Component Thermal Image Processing
3
作者 A.Sriram T.D.Sudhakar 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2761-2772,共12页
Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual conta... Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual contact)type fault identification technique which may give good precision in all aspects.The soiling issue,which is major productivity affecting factor may import from several reasons such as dust on the wind,bird mucks,etc.The efficient power production sufferers due to accumulated soil deposits reaching from 1%–7%in the county,such as India,to more than 25%in middle-east countries country,such as Dubai,Kuwait,etc.This research offers a solar panel soiling detection system built on thermal imaging which powers the inspection method and mitigates the requirement for physical panel inspection in a large solar production place.Hence,in this method,solar panels can be verified by working without disturbing production operation and it will save time and price of recognition.India ranks 3rd worldwide in the usage use age of Photovoltaic(PV)panels now and it is supported about 8.6%of the Nation’s electricity need in the year 2020.In the meantime,the installed PV production areas in India are aged 4–5 years old.Hence the need for inspection and maintenance of installed PV is growing fast day by day.As a result,this research focuses on finding the soiling hotspot exactly of the working solar panels with the help of Principal Components Thermal Analysis(PCTA)on MATLAB Environment. 展开更多
关键词 PV cell thermal imaging PCTA(Principal Components thermal Analysis) PV cell soiling detection
下载PDF
Wavelet Transform Approach to Segment Thermal Image 被引量:1
4
作者 付梦印 张长江 +1 位作者 李杰 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期33-38,共6页
An efficient multi-threshold approach to segment thermal image is given based on wavelet transform. The gray-level histogram of original image is obtained. In order to reduce the effect of noise, the gray-level histog... An efficient multi-threshold approach to segment thermal image is given based on wavelet transform. The gray-level histogram of original image is obtained. In order to reduce the effect of noise, the gray-level histogram is smoothed by Bezier curve and Bezier histogram is obtained. One dimension stationary wavelet transform is done to the curvature curve of Bezier histogram. Positions of peak values of curvature curve in wavelet domain are adjusted from 'fine-to-coarse' at all scales. The gray level values, which are located in adjusted peak values at all scales, are considered as segmentation thresholds. The gray level values of valley between peaks are considered as quantity gray levels. Optimal segmentation scale is obtained by a cost criterion. The results of experiment show that a target can be segmented effectively from complex background in thermal image by new approach. 展开更多
关键词 wavelet transform thermal image segmentation Bezier histogram CURVATURE
下载PDF
Automatic detection of sow estrus using a lightweight real-time detector and thermal images
5
作者 Haibo Zheng Hang Zhang +2 位作者 Shuang Song Yue Wang Tonghai Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期194-207,共14页
Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatur... Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time. 展开更多
关键词 automatic estrus detection thermal images real-time detector vulva temperature mixed dilated convolutional
原文传递
An empirical method for improving accuracy of human eye temperature measured by uncooled infrared thermal imager
6
作者 Bin Yuan Ping Gong +4 位作者 Liang Xie Hui Wang Banghong Zhang Hui Gao Baokan Qi 《Journal of Semiconductors》 EI CAS CSCD 2018年第9期55-60,共6页
In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement... In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement error of human eye temperature. First, the forehead temperature was used as an intermediate variable to obtain the actual temperature of human eyes. Then, the effects of environment temperature and measurement distance on the temperature measurement were separately analyzed. Finally, an empirical model was established to correlate actual eye temperature with the measured temperature, environment temperature, and measurement distance. To verify the formula, three different environment temperatures were tested at different distances. The measurement errors were substantially reduced using the empirical model for temperature correction. The results show that this method can effectively improve the accuracy of temperature measurement using the infrared thermal imager. 展开更多
关键词 semiconductor device uncooled infrared thermal imager environment temperature measurement dis-tance error correction
原文传递
Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass 被引量:3
7
作者 DU Wen-yong ZHANG Lu-da +7 位作者 HU Zhen-fang Shamaila Z ZENG Ai-jun SONG Jian-li LIU Ya-jia Wolfram S Joachim M HE Xiong-kui 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1476-1480,共5页
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha... The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass. 展开更多
关键词 thermal infrared image Infrared index ICWSI Technology of irrigation
下载PDF
Fusion of visible and thermal images for facial expression recognition 被引量:2
8
作者 Shangfei WANG Shan HE +2 位作者 Yue WU Menghua HE Qiang JI 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期232-242,共11页
Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectr... Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition. 展开更多
关键词 facial expression recognition feature-level fu-sion decision-level fusion support vector machine Bayesiannetwork thermal infrared images visible spectrum images
原文传递
Application of Spectral Angle Mapper Classification to Discriminate Hydrothermal Alteration in Southwest Birjand, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Image Processing 被引量:5
9
作者 Maryam ABDI Mohammd H. KARIMPOUR 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第5期1289-1296,共8页
The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related ... The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns. 展开更多
关键词 hydrothermal alteration Spectral Angle Mapper Advanced Spaceborne thermal Emission and Reflection Radiometer image process Iran
下载PDF
Evaluation of facial temperature distribution changes during meditation using infrared thermal imaging:An experimental,cross-over study
10
作者 Raoying Wang Lili Zhu +7 位作者 Xiaohan Liu Tengteng Li Jiayi Gao Hongjuan Li Yu Lu Yuanfeng Zhang Yibo Li Tao Lu 《Journal of Traditional Chinese Medical Sciences》 CAS 2023年第3期257-266,共10页
Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of f... Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of facial temperature changes during meditation from the perspective of traditional Chinese medicine facial diagnosis.Methods:Each participant performed 10 min meditation and 10 min resting but in different sequences.A concentration test was set as the task load,followed by a meditation/resting or resting/meditation session,during which the participants'facial temperatures were observed using IRTI.Participants were scored on the Big Five Inventory(BFI)and Mindful Attention Awareness Scale(MAAS).Results:Forehead temperatures decreased more during meditation than during the resting state.The chin temperature increased only during meditation(P<.0001).For the subjects with meditation experience,there were significant differences in the temperatures of the left forehead(P<.01),right forehead(P<.01)and chin(P<.05)between the meditation and resting state at the 10~(th)min.In the nontask state,the BFI-Extraversion showed a negative correlation with the temperature of the left forehead(R=-0.41,P=.03).In the post-task state,the temperature of the left forehead was negatively correlated with scores on the MAAS(R=-0.42,P=.02).Conclusion:Using IRTI to study meditation offers a practical solution to the challenges in meditation research.The results indicate that an increase in chin temperature may be a representative feature of a meditation state,and forehead temperature is also a potential indicator. 展开更多
关键词 MEDITATION Infrared thermal imaging MINDFULNESS PERSONALITY Meditation experience
下载PDF
The Relation between Mental Workload and Face Temperature in Flight Simulation
11
作者 Amin Bonyad Hamdi Ben Abdessalem Claude Frasson 《Journal of Behavioral and Brain Science》 2024年第2期64-92,共29页
In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between wor... In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance. 展开更多
关键词 Mental Workload EEG thermal images Flight Simulation AVIATION Face Temperature
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
12
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Research on Face Anti-Spoofing Algorithm Based on Image Fusion
13
作者 Pingping Yu Jiayu Wang +1 位作者 Ning Cao Heiner Dintera 《Computers, Materials & Continua》 SCIE EI 2021年第9期3861-3876,共16页
Along with the rapid development of biometric authentication technology,face recognition has been commercially used in many industries in recent years.However,it cannot be ignored that face recognition-based authentic... Along with the rapid development of biometric authentication technology,face recognition has been commercially used in many industries in recent years.However,it cannot be ignored that face recognition-based authentication techniques can be easily spoofed using various types of attacks such photographs,videos or forged 3D masks.In order to solve this problem,this work proposed a face anti-fraud algorithm based on the fusion of thermal infrared images and visible light images.The normal temperature distribution of the human face is stable and characteristic,and the important physiological information of the human body can be observed by the infrared thermal images.Therefore,based on the thermal infrared image,the pixel value of the pulse sensitive area of the human face is collected,and the human heart rate signal is detected to distinguish between real faces and spoofing faces.In order to better obtain the texture features of the face,an image fusion algorithm based on DTCWT and the improved Roberts algorithm is proposed.Firstly,DTCWT is used to decompose the thermal infrared image and visible light image of the face to obtain high-and low-frequency subbands.Then,the method based on region energy and the improved Roberts algorithm are then used to fuse the coefficients of the high-and low-frequency subbands.Finally,the DTCWT inverse transform is used to obtain the fused image containing the facial texture features.Face recognition is carried out on the fused image to realize identity authentication.Experimental results show that this algorithm can effectively resist attacks from photos,videos or masks.Compared with the use of visible light images alone for face recognition,this algorithm has higher recognition accuracy and better robustness. 展开更多
关键词 Anti-spoofing infrared thermal images image fusion heart rate detection
下载PDF
Human Stress Recognition from Facial Thermal-Based Signature:A Literature Survey 被引量:1
14
作者 Darshan Babu L.Arasu Ahmad Sufril Azlan Mohamed +3 位作者 Nur Intan Raihana Ruhaiyem Nagaletchimee Annamalai Syaheerah Lebai Lutfi Mustafa M.Al Qudah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期633-652,共20页
Stress is a normal reaction of the human organism which triggered in situations that require a certain level of activation.This reaction has both positive and negative effects on everyone’s life.Therefore,stress mana... Stress is a normal reaction of the human organism which triggered in situations that require a certain level of activation.This reaction has both positive and negative effects on everyone’s life.Therefore,stress management is of vital importance in maintaining the psychological balance of a person.Thermal-based imaging technique is becoming popular among researchers due to its non-contact conductive nature.Moreover,thermal-based imaging has shown promising results in detecting stress in a non-contact and non-invasive manner.Compared to other non-contact stress detection methods such as pupil dilation,keystroke behavior,social media interaction and voice modulation,thermal-based imaging provides better features with clear boundaries and requires no heavy methodology.This paper presented a brief review of previous work on thermal imaging related stress detection in humans.This paper also presented the stages of stress detection based on thermal face signatures such as dataset type,thermal image face detection,feature descriptors and classification performance comparisons are presented.This paper can help future researchers to understand stress detection based on thermal imaging by presenting the popular methods previous researchers use for stress detection based on thermal images. 展开更多
关键词 Stress state stress recognition skin temperature thermal signature thermal imaging
下载PDF
Device topological thermal management of β-Ga_(2)O_(3) Schottky barrier diodes 被引量:1
15
作者 俞扬同 向学强 +4 位作者 周选择 周凯 徐光伟 赵晓龙 龙世兵 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期509-515,共7页
The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_(2) O_(3)) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_(2) O_(... The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_(2) O_(3)) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_(2) O_(3), their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga_(2) O_(3) Schottky barrier diodes(SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga_(2) O_(3), work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga_(2) O_(3) plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga_(2) O_(3) SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga_(2) O_(3) diode. 展开更多
关键词 β-Ga_(2)O_(3)Schottky barrier diode thermal management TCAD simulation infrared thermal imaging camera
下载PDF
Response of saturated porous media subjected to local thermal loading on the surface of semi-infinite space 被引量:5
16
作者 Bing Bai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期54-61,共8页
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat... Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed. 展开更多
关键词 Saturated porous media thermal consolidation Elementary solution Heat source Method of images
下载PDF
Design of Uncooled Thermal Imaging Systems Operating at Multiple Temperatures
17
作者 张俊举 常本康 钱芸生 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期296-301,共6页
The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the re... The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the response performance of α-Si microbolometer detector and its operating temperature is studied by means of formulas of microbolometer detector's noise equivalent temperature difference(NETD) and detectivity. Numerical analysis based on true parameters demonstrates that the detectivity decreases slightly and NETD increases slightly when operating temperature rises,which indicates that α-Si microbolometer detector has approximately uniform response in a wide operating temperature range. According to these analyses,a thermal imaging system operating at multiple temperatures is designed. The power of thermoelectric stabilizer(TEC) is less than 350 mW and NETD is less than 120 mK in the ambient temperature range of-40 ℃-60 ℃,which shows that this system not only outputs high-quality images but consumes low power. 展开更多
关键词 infared technology thermal imaging system temperature characteristics NETD DETECTIVITY
下载PDF
Optical micro-scanning location calibration of thermal microscope imaging system
18
作者 关丛荣 高美静 +1 位作者 金伟其 王吉晖 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期250-255,共6页
A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement... A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity. 展开更多
关键词 thermal microscope imaging micro-scanning location calibration oversampling recon- struction
下载PDF
Characterization of Automotive Aluminum AA356 by Photo Thermal Radiometric Spectroscopy
19
作者 Alberto Lara Guevara Minerva Robles +2 位作者 Gabriel Placencia Rubén Velázquez Ignacio Rojas Rodríguez 《Journal of Materials Science and Chemical Engineering》 2021年第10期10-18,共9页
Photothermal radiometric spectroscopy was employed for characterizing an aluminum automotive piston with a steel insert. Amplitude and phase thermal property differences allowed the mapping of both metals. Thermal ima... Photothermal radiometric spectroscopy was employed for characterizing an aluminum automotive piston with a steel insert. Amplitude and phase thermal property differences allowed the mapping of both metals. Thermal images were generated by using table stages x-y movement. The thermal wave penetrated more deeply in aluminum than in steel. Results demonstrated that this relatively unknown, non-intrusively, non-contact, and non-destructive technique can be used for characterizing a wide variety of metals and other materials. 展开更多
关键词 PHOTOthermal Nondestructive Evaluation thermal Imaging AMPLITUDE Phase
下载PDF
Oversample Reconstruction Based on a Strong Inter-Diagonal Matrix for an Optical Microscanning Thermal Microscope Imaging System
20
作者 Meijing Gao Ailing Tan +3 位作者 Jie Xu Weiqi Jin Zhenlong Zu Ming Yang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期65-73,共9页
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan... Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect. 展开更多
关键词 optical microscanning strong inter-diagonal matrix oversample reconstruction thermal microscope imaging system
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部