期刊文献+
共找到3,356篇文章
< 1 2 168 >
每页显示 20 50 100
Fault Diagnosis of Industrial Motors with Extremely Similar Thermal Images Based on Deep Learning-Related Classification Approaches
1
作者 Hong Zhang Qi Wang +2 位作者 Lixing Chen Jiaming Zhou Haijian Shao 《Energy Engineering》 EI 2023年第8期1867-1883,共17页
Induction motors(IMs)typically fail due to the rate of stator short-circuits.Because of the similarity of the thermal images produced by various instances of short-circuit and the minor interclass distinctions between... Induction motors(IMs)typically fail due to the rate of stator short-circuits.Because of the similarity of the thermal images produced by various instances of short-circuit and the minor interclass distinctions between categories,non-destructive fault detection is universally perceived as a difficult issue.This paper adopts the deep learning model combined with feature fusion methods based on the image’s low-level features with higher resolution and more position and details and high-level features with more semantic information to develop a high-accuracy classification-detection approach for the fault diagnosis of IMs.Based on the publicly available thermal images(IRT)dataset related to condition monitoring of electrical equipment-IMs,the proposed approach outperforms the highest training accuracy,validation accuracy,and testing accuracy,i.e.,99%,100%,and 94%,respectively,compared with 8 benchmark approaches based on deep learning models and 3 existing approaches in the literature for 11-class IMs faults.Even the training loss,validation loss,and testing loss of the eleven deployed deep learning models meet industry standards. 展开更多
关键词 Induction motors fault diagnosis thermal images deep learning
下载PDF
An empirical method for improving accuracy of human eye temperature measured by uncooled infrared thermal imager
2
作者 Bin Yuan Ping Gong +4 位作者 Liang Xie Hui Wang Banghong Zhang Hui Gao Baokan Qi 《Journal of Semiconductors》 EI CAS CSCD 2018年第9期55-60,共6页
In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement... In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement error of human eye temperature. First, the forehead temperature was used as an intermediate variable to obtain the actual temperature of human eyes. Then, the effects of environment temperature and measurement distance on the temperature measurement were separately analyzed. Finally, an empirical model was established to correlate actual eye temperature with the measured temperature, environment temperature, and measurement distance. To verify the formula, three different environment temperatures were tested at different distances. The measurement errors were substantially reduced using the empirical model for temperature correction. The results show that this method can effectively improve the accuracy of temperature measurement using the infrared thermal imager. 展开更多
关键词 semiconductor device uncooled infrared thermal imager environment temperature measurement dis-tance error correction
原文传递
An Approach to Fault Diagnosis of Rotating Machinery Using the Second-Order Statistical Features of Thermal Images and Simplified Fuzzy ARTMAP
3
作者 Faisal Al Thobiani Van Tung Tran Tiedo Tinga 《Engineering(科研)》 2017年第6期524-539,共16页
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach... Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery. 展开更多
关键词 thermal images SECOND-ORDER Statistical Features Gray-Level CO-OCCURRENCE Matrix Minimum REDUNDANCY Maximum Relevance Rotating Machinery Fault diagnosis Simplified Fuzzy ARTMAP
下载PDF
Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows
4
作者 Fletcher Wadsworth Suresh S. Muknahallipatna Khaled Ksaibati 《Journal of Intelligent Learning Systems and Applications》 2024年第2期107-142,共36页
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst... In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance. 展开更多
关键词 Convolutional Neural Networks Residual Networks Object Detection image Processing thermal Imaging
下载PDF
Evaluation of facial temperature distribution changes during meditation using infrared thermal imaging:An experimental,cross-over study
5
作者 Raoying Wang Lili Zhu +7 位作者 Xiaohan Liu Tengteng Li Jiayi Gao Hongjuan Li Yu Lu Yuanfeng Zhang Yibo Li Tao Lu 《Journal of Traditional Chinese Medical Sciences》 CAS 2023年第3期257-266,共10页
Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of f... Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of facial temperature changes during meditation from the perspective of traditional Chinese medicine facial diagnosis.Methods:Each participant performed 10 min meditation and 10 min resting but in different sequences.A concentration test was set as the task load,followed by a meditation/resting or resting/meditation session,during which the participants'facial temperatures were observed using IRTI.Participants were scored on the Big Five Inventory(BFI)and Mindful Attention Awareness Scale(MAAS).Results:Forehead temperatures decreased more during meditation than during the resting state.The chin temperature increased only during meditation(P<.0001).For the subjects with meditation experience,there were significant differences in the temperatures of the left forehead(P<.01),right forehead(P<.01)and chin(P<.05)between the meditation and resting state at the 10~(th)min.In the nontask state,the BFI-Extraversion showed a negative correlation with the temperature of the left forehead(R=-0.41,P=.03).In the post-task state,the temperature of the left forehead was negatively correlated with scores on the MAAS(R=-0.42,P=.02).Conclusion:Using IRTI to study meditation offers a practical solution to the challenges in meditation research.The results indicate that an increase in chin temperature may be a representative feature of a meditation state,and forehead temperature is also a potential indicator. 展开更多
关键词 MEDITATION Infrared thermal imaging MINDFULNESS PERSONALITY Meditation experience
下载PDF
Photovoltaic Cell Panels Soiling Inspection Using Principal Component Thermal Image Processing
6
作者 A.Sriram T.D.Sudhakar 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2761-2772,共12页
Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual conta... Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual contact)type fault identification technique which may give good precision in all aspects.The soiling issue,which is major productivity affecting factor may import from several reasons such as dust on the wind,bird mucks,etc.The efficient power production sufferers due to accumulated soil deposits reaching from 1%–7%in the county,such as India,to more than 25%in middle-east countries country,such as Dubai,Kuwait,etc.This research offers a solar panel soiling detection system built on thermal imaging which powers the inspection method and mitigates the requirement for physical panel inspection in a large solar production place.Hence,in this method,solar panels can be verified by working without disturbing production operation and it will save time and price of recognition.India ranks 3rd worldwide in the usage use age of Photovoltaic(PV)panels now and it is supported about 8.6%of the Nation’s electricity need in the year 2020.In the meantime,the installed PV production areas in India are aged 4–5 years old.Hence the need for inspection and maintenance of installed PV is growing fast day by day.As a result,this research focuses on finding the soiling hotspot exactly of the working solar panels with the help of Principal Components Thermal Analysis(PCTA)on MATLAB Environment. 展开更多
关键词 PV cell thermal imaging PCTA(Principal Components thermal Analysis) PV cell soiling detection
下载PDF
The Relation between Mental Workload and Face Temperature in Flight Simulation
7
作者 Amin Bonyad Hamdi Ben Abdessalem Claude Frasson 《Journal of Behavioral and Brain Science》 2024年第2期64-92,共29页
In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between wor... In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance. 展开更多
关键词 Mental Workload EEG thermal images Flight Simulation AVIATION Face temperature
下载PDF
Using shape contexts method for registration of contra lateral breasts in thermal images 被引量:2
8
作者 Mahnaz Etehadtavakol Eddie Yin-Kwee Ng Niloofar Gheissari 《World Journal of Clinical Oncology》 CAS 2014年第5期1055-1059,共5页
AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an a... AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. RESULTS: In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligningtransformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows:(1) no special land marks or key points are needed;(2) it is tolerant to all common shape deformation; and(3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases.CONCLUSION: We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images. 展开更多
关键词 BREAST thermal images Shape CONTEXTS REGISTRATION Cancer detection INFRARED
下载PDF
Wavelet Transform Approach to Segment Thermal Image 被引量:1
9
作者 付梦印 张长江 +1 位作者 李杰 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期33-38,共6页
An efficient multi-threshold approach to segment thermal image is given based on wavelet transform. The gray-level histogram of original image is obtained. In order to reduce the effect of noise, the gray-level histog... An efficient multi-threshold approach to segment thermal image is given based on wavelet transform. The gray-level histogram of original image is obtained. In order to reduce the effect of noise, the gray-level histogram is smoothed by Bezier curve and Bezier histogram is obtained. One dimension stationary wavelet transform is done to the curvature curve of Bezier histogram. Positions of peak values of curvature curve in wavelet domain are adjusted from 'fine-to-coarse' at all scales. The gray level values, which are located in adjusted peak values at all scales, are considered as segmentation thresholds. The gray level values of valley between peaks are considered as quantity gray levels. Optimal segmentation scale is obtained by a cost criterion. The results of experiment show that a target can be segmented effectively from complex background in thermal image by new approach. 展开更多
关键词 wavelet transform thermal image segmentation Bezier histogram CURVATURE
下载PDF
INFRARED THERMAL IMAGE STUDY ON THE FOREWARNING OF COAL AND SANDSTONE FAILURE UNDER LOAD 被引量:2
10
作者 吴立新 王金庄 《Journal of Coal Science & Engineering(China)》 1997年第2期15-23,共9页
In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone fa... In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed. 展开更多
关键词 岩石力学 红外遥感技术 RS 矿山 光谱辐射特性 地质工作
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
11
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Design of Uncooled Thermal Imaging Systems Operating at Multiple Temperatures
12
作者 张俊举 常本康 钱芸生 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期296-301,共6页
The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the re... The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the response performance of α-Si microbolometer detector and its operating temperature is studied by means of formulas of microbolometer detector's noise equivalent temperature difference(NETD) and detectivity. Numerical analysis based on true parameters demonstrates that the detectivity decreases slightly and NETD increases slightly when operating temperature rises,which indicates that α-Si microbolometer detector has approximately uniform response in a wide operating temperature range. According to these analyses,a thermal imaging system operating at multiple temperatures is designed. The power of thermoelectric stabilizer(TEC) is less than 350 mW and NETD is less than 120 mK in the ambient temperature range of-40 ℃-60 ℃,which shows that this system not only outputs high-quality images but consumes low power. 展开更多
关键词 infared technology thermal imaging system temperature characteristics NETD DETECTIVITY
下载PDF
Leakage Currents of Zinc Oxide Surge Arresters in 22 kV Distribution System Using Thermal Image Camera
13
作者 Wichet Thipprasert Prakasit Sritakaew 《Journal of Power and Energy Engineering》 2014年第4期712-717,共6页
Zinc Oxide (ZnO) surge arresters (SAs) experience thermal runaway when the temperature exceeds the acceptable limit. This phenomenon is associated with the increase in resistive leakage current due to degradation. Thi... Zinc Oxide (ZnO) surge arresters (SAs) experience thermal runaway when the temperature exceeds the acceptable limit. This phenomenon is associated with the increase in resistive leakage current due to degradation. This paper presents the electrical performance of ZnO SAs in 22 kV distribution systems using thermal image camera under the power frequency AC operating voltages. When ZnO surge arresters are installation takes a long time in distribution system over more than 5 years. For the experimental study, as ZnO installation takes a long time over 6 years the leakage current is 63.9 mA, temperature differences were measured over a period of time over 14 degree Celsius. This data will be useful as a guideline for solving problems and reducing power loss from leakage current. Moreover, it will be useful in predicting lifetime of ZnO SAs. 展开更多
关键词 Electrical Performance SURGE ARRESTER thermal image CAMERA
下载PDF
An Application of Canny Edge Detection Algorithm to Rail Thermal Image Fault Detection
14
作者 Libo Cai Yu Ma +2 位作者 Tangming Yuan Haifeng Wang Tianhua Xu 《Journal of Computer and Communications》 2015年第11期19-24,共6页
The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equali... The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equalization method is proposed to enhance the contrast of the image. Since a thermal image contains multiple parallel rail tracks, an algorithm has been developed to locate and separate the tracks that we are interested in. This is accomplished by applying the least squares linear fitting technique to represent the surface of a track. The performance of the application is evaluated by using a number of images provided by a specialised company and the results are essentially favourable. 展开更多
关键词 FAULT DETECTION RAIL thermal image CANNY Edge DETECTION Linear Least SQUARES
下载PDF
Infra-red Thermal Imaging of the Inner Canthus: Correlates with the Temperature of the Injured Human Brain
15
作者 Charmaine Childs Mya Myint Zu +3 位作者 Aung Phyo Wai Yeo Tseng Tsai Shiqian Wu Wang Li 《Engineering(科研)》 2012年第10期53-56,共4页
Introduction: Infra-red (IR) thermometry is a safe and valid method to determine internal and surface temperature in human subjects. Under conditions of brain damage (head injury or stroke) knowledge of changes in the... Introduction: Infra-red (IR) thermometry is a safe and valid method to determine internal and surface temperature in human subjects. Under conditions of brain damage (head injury or stroke) knowledge of changes in the temperature of intracranial tissue is justified because of the vulnerability of neurons to accelerated damage at temperatures at the upper end of the febrile range. Aim: To determine the temperature at the inner canthus (IC) of the eye as a potential surrogate for brain temperature. Methods: Invasive monitoring of deep brain structures, lateral ventricle and deep white matter. IR temperature readings obtained at right and left IC. Results: ?Strong correlations were evident between R and L IC and brain. Close, as well as poor, agreement between?? sites was shown in some patients and at some times. For right hemispheric lesions four had a better correlation between TbrV and TRIC when compared to TLIC.? When the correlation between TbrV and TLIC was better compared to TbrV and TRIC, four had a predominant right hemispheric lesion. Conclusions: Improved techniques for IR thermal imaging accuracy at the bedside has the potential to improve temperature measurement agreement. The predominant lesion side may have a bearing on maximum ipsilateral IC temperature Further studies are ongoing in this pilot study population. 展开更多
关键词 BRAIN temperature INFRA-RED Thermometry INNER Canthus thermal Imaging Eye
下载PDF
Estimation of Land Surface Temperature of Yola, North Eastern Nigeria Using Landsat-7 ETM+ Satellite Image
16
作者 A. Alkasim A. A. Hayatu M. K. Salihu 《Energy and Power Engineering》 2018年第10期449-456,共8页
The land surface temperature of Yola (latitude 9&deg11'N to 9&deg20'N and longitude 12&deg23'E to 12&deg33'E) North-eastern Nigeria was estimated using landsat-7 ETM+ satellite images. ... The land surface temperature of Yola (latitude 9&deg11'N to 9&deg20'N and longitude 12&deg23'E to 12&deg33'E) North-eastern Nigeria was estimated using landsat-7 ETM+ satellite images. ENVI 4.5 software, and Thermal band 6.2 were used for the estimation, land surface temperature, from Landsat-7 ETM+ imagery sensors acquired as a digital number (DN) range from 0 - 255 in thermal band. DNs were first converted to radiance values in Wm-2·sr-1·μm-1, using the bias and gain values specific to an individual pixel, then the radiance was converted eventually to surface temperature (in Kelvin). The results indicate that there is a significant variation in land surface temperature between the two different seasons in Yola. The mean surface temperatures estimated are 307.9 K and 298.1 K during the dry and rainy seasons respectively. The result obtained was compared with data obtained from Meteorological Department. The estimated land surface temperature showed a good correlation, with a difference of 2 K to 3 K. 展开更多
关键词 Land Surface temperature Satellite images thermal Band RADIANCE and LANDSAT Data
下载PDF
Automatic detection of sow estrus using a lightweight real-time detector and thermal images
17
作者 Haibo Zheng Hang Zhang +2 位作者 Shuang Song Yue Wang Tonghai Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期194-207,共14页
Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatur... Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time. 展开更多
关键词 automatic estrus detection thermal images real-time detector vulva temperature mixed dilated convolutional
原文传递
Detection of Thermophysical Properties for High Strength Concrete after Exposure to High Temperature 被引量:3
18
作者 杜红秀 WU Jia +2 位作者 LIU Gaili WU Huiping YAN Ruizhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期113-120,共8页
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma... Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC. 展开更多
关键词 high-strength concrete polypropylene fiber high temperature infrared thermal imaging technique coefficient of thermal conductivity compressive strength ratio
下载PDF
Real-time measurement of welding temperature field and closed loop control of penetration 被引量:2
19
作者 张华 潘际銮 《China Welding》 EI CAS 1999年第2期49-56,共8页
Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distanc... Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distance, emissivity of body etc. In this paper the real time measuring system and measuring principle of welding temperature field are described, the whole welding temperature field is real time measured, so the temperature distribution at the welding direction and its cross section is obtained, then parameters of thermal cycle. With data from the temperature closed loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5 s ) and good dynamic response quality. Weld penetration can be controlled satisfactorily under the variation of welding condition such as welding thickness, welding speed and weldment gap etc. 展开更多
关键词 welding temperature field colorimetric method of images welding thermal cycle penetration control
下载PDF
Identification of thermal front dynamics in the northern Malacca Strait using ROMS 3D-model
20
作者 Ku Nor Afiza Asnida Ku MANSOR Nur Hidayah ROSELI +2 位作者 Poh Heng KOK Fariz Syafiq Mohamad ALI Mohd Fadzil Mohd AKHIR 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期41-57,共17页
The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter ... The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter the characteristics of this important feature.Using the simulation results of the 3D Regional Ocean Modelling System(ROMS),we identified the location of thermal fronts and determined their dynamic variability in the area between the southern Andaman Sea and northern Malacca Strait.The Single Image Edge Detection(SIED)algorithm was used to detect the thermal front from model-derived temperature.Results show that a thermal front occurred every year from 2002 to 2012 with the temperature gradient at the location of the front was 0.3°C/km.Compared to the years affected by El Ni?o and negative Indian Ocean Dipole(IOD),the normal years(e.g.,May 2003)show the presence of the thermal front at every selected depth(10,25,50,and 75 m),whereas El Ni?o and negative IOD during 2010 show the presence of the thermal front only at depth of 75 m due to greater warming,leading to the thermocline deepening and enhanced stratification.During May 2003,the thermal front was separated by cooler SST in the southern Andaman Sea and warmer SST in the northern Malacca Strait.The higher SST in the northern Malacca Strait was believed due to the besieged Malacca Strait,which trapped the heat and make it difficult to release while higher chlorophyll a in Malacca Strait is due to the freshwater conduit from nearby rivers(Klang,Langat,Perak,and Selangor).Furthermore,compared to the southern Andaman Sea,the chlorophyll a in the northern Malacca Strait is easier to reach the surface area due to the shallower thermocline,which allows nutrients in the area to reach the surface faster. 展开更多
关键词 regional ocean modelling system thermal front Andaman Sea Malacca Strait single image edge detection algorithm
下载PDF
上一页 1 2 168 下一页 到第
使用帮助 返回顶部