In this paper,the operation characteristics of a microscale internal combustion swing engine(MICSE)were investigated experimentally and numerically.The energy flow path of MICSE was comprehensively analyzed based on t...In this paper,the operation characteristics of a microscale internal combustion swing engine(MICSE)were investigated experimentally and numerically.The energy flow path of MICSE was comprehensively analyzed based on the first law of thermodynamics.The accuracy of zero-dimensional model was verified by experiments.The indicative thermal efficiency of the engine increases first and then decreases with the increase of equivalent ratio or ignition advance angle.The results show that there exists an optimum equivalent ratio and ignition advance angle during operation.The maximum efficiency of the engine reaches 12.5%when the equivalent ratio and ignition advance angle are 0.8 and−0.553,respectively.MICSE can operate normally when the equivalent ratio is greater than 0.6.The peak value of net heat release rate lags behind that of pressure change,which is different from the conventional crank engine.Experimental and simulation results show that the leakage of MICSE is serious,and it is the main loss of MICSE.The order of energy terms is as follows:leakage loss>exhaust loss>heat loss>indicative work.展开更多
基金This project is funded by the National Natural Science Foundation of China(No.52076007)the National Key Basic Research Program of China(No.2014CB239603).
文摘In this paper,the operation characteristics of a microscale internal combustion swing engine(MICSE)were investigated experimentally and numerically.The energy flow path of MICSE was comprehensively analyzed based on the first law of thermodynamics.The accuracy of zero-dimensional model was verified by experiments.The indicative thermal efficiency of the engine increases first and then decreases with the increase of equivalent ratio or ignition advance angle.The results show that there exists an optimum equivalent ratio and ignition advance angle during operation.The maximum efficiency of the engine reaches 12.5%when the equivalent ratio and ignition advance angle are 0.8 and−0.553,respectively.MICSE can operate normally when the equivalent ratio is greater than 0.6.The peak value of net heat release rate lags behind that of pressure change,which is different from the conventional crank engine.Experimental and simulation results show that the leakage of MICSE is serious,and it is the main loss of MICSE.The order of energy terms is as follows:leakage loss>exhaust loss>heat loss>indicative work.