Chemical co-precipitation method was used to synthesize tin-doped indium oxide(ITO)nanoparticles,and the subsequent solution co-blend was employed to fabricate ITO/PVB nanocomposites.UV(Ultra-violet)-Vis(Visible...Chemical co-precipitation method was used to synthesize tin-doped indium oxide(ITO)nanoparticles,and the subsequent solution co-blend was employed to fabricate ITO/PVB nanocomposites.UV(Ultra-violet)-Vis(Visible)-NIR(Near Infrared) spectra show that the addition of ITO nano particles can significantly enhance the thermal insulating efficiency of ITO/PVB nanocomposites.With increasing ITO content,the thermal insulating efficiency is increased.UV is almost fully absorbed by all ITO/PVB nanocomposites.Vis transmittance-haze spectra reveal that ITO/PVB nanocomposites exhibit higher Vis transmittance over 71.3%and lower haze below 2%when ITO content is in the range of 0.1 wt%-0.7 wt%.The UV-Vis-NIR spectroscopy shows that,under the premise of over 70%transmittance to the visible light,the screening effect of the NIR can be enhanced by 80%with 0.7%ITO/PVB nanocomposite membrane compared with the undoped PVB.The thermal insulating tests indicate that,in comparison with the pure PVB film,nanocomposite films with 0.1 wt%-0.9 wt%ITO can reduce temperature by 3-8 ℃.The results show that this novel nanocomposite can be used for energy-saving glass.展开更多
The pechini method was used to synthesize antimony-doped tin oxide (ATO) nanoparticles, and the subsequent solution co-blend was employed to fabricate ATO/PVB nanocomposites. Uv-Vis-NIR spectra show that the additio...The pechini method was used to synthesize antimony-doped tin oxide (ATO) nanoparticles, and the subsequent solution co-blend was employed to fabricate ATO/PVB nanocomposites. Uv-Vis-NIR spectra show that the addition ofATO nano particles can significantly enhance the thermal insulating efficiency of ATO/PVB nanocomposites. With the increase of ATO content, the thermal insulating efficiency is increased. Uv is almost fully absorbed by all ATO/PVB nanocomposites. Vis transmittance-haze spectra reveal that ATO/ PVB nanocomposites exhibit higher Vis transmittance of over 72.7% and lower haze of below 2% when ATO content is in the range of 0.1 wt%-0.5 wt%. The thermal insulating tests indicate that in comparison with the pure PVB film, nanocomposite films with 0.1 wt%-0.5 wt% ATO can reduce temperature of 1-3 ℃, suggesting that this novel nanocomposite can be used for energy-saving glass.展开更多
A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive st...A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.展开更多
The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was...The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material.展开更多
Laboratory and industrial experiments were carried out to study the possibility of producing high purity purity mullite-corundumthermal insulating firebricks. The results show that by using industrial alumina. natuua...Laboratory and industrial experiments were carried out to study the possibility of producing high purity purity mullite-corundumthermal insulating firebricks. The results show that by using industrial alumina. natuual powder power, coal gangues and a small amountof additives. high purity mullite-corundum thermal insulating firebrieks can be produced The service. temperature of these brick can beup to 1780 with low. thermal conductivity' and good thermal shock resistance展开更多
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
Superior thermal insulating and fire-retardant ceramic membranes are urgently demanded in the aerospace,construction,and chemical engineering industries.However,the generic characteristics of ceramic membranes,such as...Superior thermal insulating and fire-retardant ceramic membranes are urgently demanded in the aerospace,construction,and chemical engineering industries.However,the generic characteristics of ceramic membranes,such as brittleness,structural collapse,and crystallization-induced pulverization behavior,present a great plague to their practical applications.Herein,we report a highly flexible,mechanically stable,fire-retardant,and high-temperature-resistant ceramic membrane based on the interlocked Si_(3)N_(4) nanowires formed by the precursor pyrolysis method.The Si_(3)N_(4) nanowire membrane(SNM)has excellent high-temperature resistance under alcohol lamps and butane spray lance.The thermal insulation with a thermal conductivity as low as 0.056 W m^(-1)K^(-1)can be attributed to the high porosity of SNM,which makes it a desirable candidate for heat insulators under harsh conditions.More importantly,SNM exhibits thermal stability and robust mechanical properties in the range of 25 to 1300℃.The high-temperature resistance of SNM up to 1300℃is achieved by the four stages:Si3 N4 nanowires,Si_(3)N_(4)@SiO_(2) nanowires,SiO_(2) nanowires,and bead-like SiO_(2) nanowires.After heat-treated at 1300℃,the macroscopic size of SNM does not change significantly,and the interlocked structure is still maintained.Furthermore,SNM still maintains excellent mechanical properties,with tensile strength as high as 0.26 MPa.This work provides a facile method for fabricating excellent thermal insulating and fire-retardant ceramic membranes,showing prospective application prospects in the era of thermal insulating materials.展开更多
Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,howev...Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,however,the parasitic heat input and heat leakage pose crucial challenges to commercial and residential buildings cooling.The integrating of radiative cooling and thermal insulation properties represents an attractive direction in renewable energy-efficient building envelope materials.Herein,we present a hierarchically porous hybrid film as a scalable and flexible thermal insulating subambient radiative cooler via a simple and inexpensive inverse high internal phase emulsion strategy.The as-prepared porous hybrid film exhibits an intrinsic combination of high solar reflectance(0.95),strong longwave infrared thermal emittance(0.97),and low thermal conductivity(31 mW/(m K)),yielding a subambient cooling temperature of~8.4℃ during the night and~6.5℃ during the hot midday with an average cooling power of~94 W/m^(2) under a solar intensity of~900 W/m^(2).Promisingly,combining the superhydrophobicity,durability,superelasticity,robust mechanical strength,and industrial applicability,the film is favorable for large-scale,sustainable and energy-saving applications in a wide variety of climates and complicated surfaces,enabling a substantial reduction of energy costs,greenhouse gas emission and associated ozone-depleting from traditional cooling systems.展开更多
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab...The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection,but current catheters do not support thermally-insulated transfer of cold infusate,which results in an increased exi...Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection,but current catheters do not support thermally-insulated transfer of cold infusate,which results in an increased exit temperature,causes hemodilution,and limits its cooling efficiency.Herein,air-sprayed fibroin/silica-based coatings combined with chemical vapor deposited parylene-C capping film was prepared on catheter.This coating features in dual-sized-hollow-microparticle incorporated structures with low thermal conductivity.The infusate exit temperature is tunable by adjusting the coating thickness and infusion rate.No peeling or cracking was observed on the coatings under bending and rotational scenarios in the vascular models.Its efficiency was verified in a swine model,and the outlet temperature of coated catheter(75μm thickness)was 1.8-2.0◦C lower than that of the uncoated one.This pioneering work on catheter thermal insulation coatings may facilitate the clinical translation of selective endovascular hypothermia for neuroprotection in patients with acute ischemic stroke.展开更多
Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Fur...Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul...This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.展开更多
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)...Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.展开更多
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca...As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.展开更多
Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity a...Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.展开更多
基金Funded by State Key Laboratory of Silicate Building Materials(Wuhan University of Technology),China(No.SYSJJ2014-04)Hubei Science and Technology Department,China(No.Q20141006)
文摘Chemical co-precipitation method was used to synthesize tin-doped indium oxide(ITO)nanoparticles,and the subsequent solution co-blend was employed to fabricate ITO/PVB nanocomposites.UV(Ultra-violet)-Vis(Visible)-NIR(Near Infrared) spectra show that the addition of ITO nano particles can significantly enhance the thermal insulating efficiency of ITO/PVB nanocomposites.With increasing ITO content,the thermal insulating efficiency is increased.UV is almost fully absorbed by all ITO/PVB nanocomposites.Vis transmittance-haze spectra reveal that ITO/PVB nanocomposites exhibit higher Vis transmittance over 71.3%and lower haze below 2%when ITO content is in the range of 0.1 wt%-0.7 wt%.The UV-Vis-NIR spectroscopy shows that,under the premise of over 70%transmittance to the visible light,the screening effect of the NIR can be enhanced by 80%with 0.7%ITO/PVB nanocomposite membrane compared with the undoped PVB.The thermal insulating tests indicate that,in comparison with the pure PVB film,nanocomposite films with 0.1 wt%-0.9 wt%ITO can reduce temperature by 3-8 ℃.The results show that this novel nanocomposite can be used for energy-saving glass.
基金Funded by Wuhan Science and Technology Bureau,Hubei,China(No.200911011428)Hubei Science and Technology Department,China(No.2010EGA047)Key Laboratory of Green Preparation and Application for Functional Materials,Ministry of Education,China(No.2010EKLGPAFM018)
文摘The pechini method was used to synthesize antimony-doped tin oxide (ATO) nanoparticles, and the subsequent solution co-blend was employed to fabricate ATO/PVB nanocomposites. Uv-Vis-NIR spectra show that the addition ofATO nano particles can significantly enhance the thermal insulating efficiency of ATO/PVB nanocomposites. With the increase of ATO content, the thermal insulating efficiency is increased. Uv is almost fully absorbed by all ATO/PVB nanocomposites. Vis transmittance-haze spectra reveal that ATO/ PVB nanocomposites exhibit higher Vis transmittance of over 72.7% and lower haze of below 2% when ATO content is in the range of 0.1 wt%-0.5 wt%. The thermal insulating tests indicate that in comparison with the pure PVB film, nanocomposite films with 0.1 wt%-0.5 wt% ATO can reduce temperature of 1-3 ℃, suggesting that this novel nanocomposite can be used for energy-saving glass.
基金Project 20062147 supported by the Liaoning Province Natural Science Foundation of China
文摘A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.
文摘The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material.
文摘Laboratory and industrial experiments were carried out to study the possibility of producing high purity purity mullite-corundumthermal insulating firebricks. The results show that by using industrial alumina. natuual powder power, coal gangues and a small amountof additives. high purity mullite-corundum thermal insulating firebrieks can be produced The service. temperature of these brick can beup to 1780 with low. thermal conductivity' and good thermal shock resistance
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金financially supported by the National Natural Science Foundation of China(Grant No.51872232)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015)+3 种基金the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04)the National Training Program of Innovation and Entrepreneurship for Undergraduates(Grand No.XN2022023)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067).
文摘Superior thermal insulating and fire-retardant ceramic membranes are urgently demanded in the aerospace,construction,and chemical engineering industries.However,the generic characteristics of ceramic membranes,such as brittleness,structural collapse,and crystallization-induced pulverization behavior,present a great plague to their practical applications.Herein,we report a highly flexible,mechanically stable,fire-retardant,and high-temperature-resistant ceramic membrane based on the interlocked Si_(3)N_(4) nanowires formed by the precursor pyrolysis method.The Si_(3)N_(4) nanowire membrane(SNM)has excellent high-temperature resistance under alcohol lamps and butane spray lance.The thermal insulation with a thermal conductivity as low as 0.056 W m^(-1)K^(-1)can be attributed to the high porosity of SNM,which makes it a desirable candidate for heat insulators under harsh conditions.More importantly,SNM exhibits thermal stability and robust mechanical properties in the range of 25 to 1300℃.The high-temperature resistance of SNM up to 1300℃is achieved by the four stages:Si3 N4 nanowires,Si_(3)N_(4)@SiO_(2) nanowires,SiO_(2) nanowires,and bead-like SiO_(2) nanowires.After heat-treated at 1300℃,the macroscopic size of SNM does not change significantly,and the interlocked structure is still maintained.Furthermore,SNM still maintains excellent mechanical properties,with tensile strength as high as 0.26 MPa.This work provides a facile method for fabricating excellent thermal insulating and fire-retardant ceramic membranes,showing prospective application prospects in the era of thermal insulating materials.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0204600)the National Natural Science Foundation of China(51721002 and 52033003)+4 种基金Y.Z.acknowledges the support by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe National Natural Science Foundation of China(62175154)Shanghai Pujiang Program(20PJ1411900)Shanghai Science and Technology Program(21ZR1445500)T.W.acknowledges the support of Shanghai Yangfan Program(22YF1430200).
文摘Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,however,the parasitic heat input and heat leakage pose crucial challenges to commercial and residential buildings cooling.The integrating of radiative cooling and thermal insulation properties represents an attractive direction in renewable energy-efficient building envelope materials.Herein,we present a hierarchically porous hybrid film as a scalable and flexible thermal insulating subambient radiative cooler via a simple and inexpensive inverse high internal phase emulsion strategy.The as-prepared porous hybrid film exhibits an intrinsic combination of high solar reflectance(0.95),strong longwave infrared thermal emittance(0.97),and low thermal conductivity(31 mW/(m K)),yielding a subambient cooling temperature of~8.4℃ during the night and~6.5℃ during the hot midday with an average cooling power of~94 W/m^(2) under a solar intensity of~900 W/m^(2).Promisingly,combining the superhydrophobicity,durability,superelasticity,robust mechanical strength,and industrial applicability,the film is favorable for large-scale,sustainable and energy-saving applications in a wide variety of climates and complicated surfaces,enabling a substantial reduction of energy costs,greenhouse gas emission and associated ozone-depleting from traditional cooling systems.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.52273067,52122303,52233006)the Fundamental Research Funds for the Central Universities(Grant No.2232023A-03)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23SG29).
文摘The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金supported by National Natural Science Foundation of China(82102220,82027802,61975017,82071468)Beijing Municipal Science and Technology Commission(Z221100007422023)+1 种基金General Projects of Scientific and Technological Plan of Beijing Municipal Education Commission(KM202010025023)Talents Gathering Project of Xuanwu Hospital Capital Medical University.
文摘Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection,but current catheters do not support thermally-insulated transfer of cold infusate,which results in an increased exit temperature,causes hemodilution,and limits its cooling efficiency.Herein,air-sprayed fibroin/silica-based coatings combined with chemical vapor deposited parylene-C capping film was prepared on catheter.This coating features in dual-sized-hollow-microparticle incorporated structures with low thermal conductivity.The infusate exit temperature is tunable by adjusting the coating thickness and infusion rate.No peeling or cracking was observed on the coatings under bending and rotational scenarios in the vascular models.Its efficiency was verified in a swine model,and the outlet temperature of coated catheter(75μm thickness)was 1.8-2.0◦C lower than that of the uncoated one.This pioneering work on catheter thermal insulation coatings may facilitate the clinical translation of selective endovascular hypothermia for neuroprotection in patients with acute ischemic stroke.
基金financially supported by the Research Grants Council of Hong Kong SAR(16200720)Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)+2 种基金Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Institute for Advanced Manufucturing(Project No.CD8R)the startup fund for new recruits of PolyU(Project Nos.P0038855 and P0038858)。
文摘Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
文摘This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.
基金the National Key R&D Program of China(No.2021YFB3701404)the National Natural Science Fund for Distinguished Young Scholars(No.52025041)+1 种基金the National Natural Science Foundation of China(Nos.52250091,51904021,and 52174294)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-02C2 and FRF-BD-22-05).
文摘Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.
文摘As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.
基金supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.