期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Study on Thermal Insulation Performance of Cross-Laminated Bamboo Wall 被引量:5
1
作者 Qingfang Lv Weiyang Wang Ye Liu 《Journal of Renewable Materials》 SCIE 2019年第11期1231-1250,共20页
In recent years,bamboo,as a green building material,has attracted more and more attention worldwide.Inspired by the investigation of cross-laminated timber in structural systems,a new engineered cross-laminated bamboo... In recent years,bamboo,as a green building material,has attracted more and more attention worldwide.Inspired by the investigation of cross-laminated timber in structural systems,a new engineered cross-laminated bamboo(CLB)consisting of the cross lamination of bamboo scrimber plates is proposed in this paper.To evaluate its potential in structural applications,the thermal insulation performances of the CLB walls and CLB walls with the EPS foam plate were studied and evaluated by the temperature-controlled box-heat flow meter method.Test results indicated that the thermal insulation performance improved with the increase of thickness,but different wall configurations had little effect on the thermal insulation performance under the same thickness of the CLB wall.The thermal insulation performance of EPS-CLB composite wall was much better than that of CLB wall.In addition,a relatively acceptable accuracy of the theoretical calculations was proved.Finally,the influence of different locations of the EPS foam plate on heat transfer coefficient can be neglected as it was studied based on the validated numerical models. 展开更多
关键词 Cross-laminated bamboo steady-state heat transfer guarded hot plate method temperature-controlled box-heat flow meter method thermal insulation performance
下载PDF
Numerical estimation of thermal insulation performance of different coverage schemes at three places for snow storage 被引量:4
2
作者 WANG Xing QIN Da-He +1 位作者 REN Jia-Wen WANG Fei-Teng 《Advances in Climate Change Research》 SCIE CSCD 2021年第6期903-912,共10页
With increasing global warming, the skiing season is shortened to different degrees all over the world. As a crucial way to ensure the sustainable development of the ski industry, snow storage has been gradually studi... With increasing global warming, the skiing season is shortened to different degrees all over the world. As a crucial way to ensure the sustainable development of the ski industry, snow storage has been gradually studied and applied in Europe. Covering thermal insulation materials is a key engineering measure for the success of snow storage. This study used numerical methods rather than an experimental method to evaluate the thermal insulation performance of nine snow storage coverage schemes in Harbin, Beijing, and Altay, China. We investigated the thermal insulation performance of nine snow storage coverage schemes (three natural materials and six artificial ones) using a solar radiation method and an implicit finite difference method. Sensitivity analyses were conducted, and the cost performance of schemes 5–9 were analyzed. Based on the cost and thermal insulation performance, we used schemes 4 (geotextile, straw bale), 5 (geotextile, extruded polystyrene foam), and 7 (geotextile, polyurethane foam) to evaluate the snow storage effects in Harbin, Beijing, and Altay. Results showed that among schemes 1–9, scheme 7 has the best thermal insulation performance. If natural materials are used, then scheme 3 gives the best thermal insulation performance. Among schemes 5–9, scheme 5 is the most economical. The heat transfer in Beijing is higher than that in Harbin and Altay, while the latter two show similar heat transfers. The combination of meteorological conditions and coverage schemes influence the melting rate of snowpacks. The melting rate of snowpacks can be reduced with an optimized coverage scheme. The proposed methods can serve the selection of coverage schemes for snow storage. 展开更多
关键词 Snow storage Coverage schemes thermal insulation performance Numerical simulation
原文传递
Wood plastic composites based wood wall’s structure and thermal insulation performance 被引量:3
3
作者 Lu Zhang Zehua Chen +3 位作者 Haoran Dong Shuai Fu Lan Ma Xiaojun Yang 《Journal of Bioresources and Bioproducts》 EI 2021年第1期65-74,共10页
In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation perfor... In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation performances of the walls are studied.The results show that the WPC integrated wall with frame-shear structure has a good stability,and the excellent performance of the WPC can be fully realized.Wall studs and wall panels are important factors affecting the thermal performance of the walls.Wood plastic materials can meet the thermal performance requirements of the walls.The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance.According to‘Design Standard for Energy Efficiency of Public Buildings(GB 50189-2015)’,the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m^(2)•K),which can meet the standard of wall thermal levelⅡt and is suitable for cold areas.The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m^(2)•K),which can meet the standard of wall thermal levelⅠt and is suitable for severe cold areas. 展开更多
关键词 Wood plastic composite(WPC) thermal insulation performance Heat transfer coefficient Frame-shear structure wall
原文传递
Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source
4
作者 Xinyuan Zhang Chenkang Xia +3 位作者 Weihai Liu Mingyuan Hao Yang Miao Feng Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1375-1387,共13页
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae... As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers. 展开更多
关键词 water glass silicon carbide aerogel microwave absorbing thermal insulation performance
下载PDF
Permanent lining castable with low bulk density and thermal conductivity:bauxite castable for tundish obtained by adding pearlescent sand
5
作者 Yi Wang Jian Yang +5 位作者 Bao Wang Hai-jun Zhang Juan Han Pei-yan Pei Wen-long Lv Jian-an Zhou 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第3期634-646,共13页
The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel.In consideration of the low bulk density and thermal conductivity of pear... The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel.In consideration of the low bulk density and thermal conductivity of pearlescent sand,the thermal insulation performance of castables was attempted to be improved by adding pearlescent sand.Pearlescent sand was modified to prevent the strength of its porous structure from deteriorating.The modification mechanism of pearlescent sand and the effect of pearlescent sand on the performance of bauxite castables were studied.The results suggested that the addition of the modified pearlescent sand significantly raised the apparent porosity and decreased the bulk density of bauxite castable.At 1000℃,the bulk density of more than 60%of the modified pearlescent sand-bauxite castable was only 2.03 g/cm^(3).The mechanical properties and thermal shock resistance of the modified pearlescent sand-bauxite castable were inferior to those of conventional bauxite castable but were adequate to meet the use conditions of casta-bles for tundish permanent linings.At high temperatures of 200-800℃,the thermal conductivity of more than 60%of the modified pearlescent sand-bauxite castable was smaller than that of conventional bauxite castable.The addition of the modified pearlescent sand can greatly reduce the thermal conductivity and bulk density of bauxite castable. 展开更多
关键词 Pearlescent sand-Hydrophobic modification Bauxite castable thermal insulation performance Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部