期刊文献+
共找到2,197篇文章
< 1 2 110 >
每页显示 20 50 100
Comparison of microwave- and thermal-assisted rock fragmentation methods at different temperatures and loading rates
1
作者 Wei Yao Shuai Wang +2 位作者 Bangbiao Wu Ying Xu Kaiwen Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期799-819,共21页
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F... Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests. 展开更多
关键词 Fangshan granite Dynamic experiments Microwave irradiation thermal treatment loading rate FRAGMENTATION
下载PDF
A thermal stress loading technique for large-sized hot dry rock mechanical tests
2
作者 Huiling Ci Bing Bai +2 位作者 Hongwu Lei Yan Zou Jianfeng Liu 《Deep Underground Science and Engineering》 2024年第3期326-337,共12页
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra... Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed. 展开更多
关键词 deep rock engineering high-temperature and high-stress conditions hot dry rock large-sized model test thermal stress loading
下载PDF
A Nonlinear Explicit Model of A Non-Circular Subsea Tunnel-Liner System with An FGM Inverted Arch Under Mechanical Loading and Fire Fields
3
作者 HE Jie CHANG Guo-yong +1 位作者 LIU Yang LI Zhao-chao 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期855-865,共11页
This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Gra... This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Graded Materials(FGMs),which may improve the stability behavior of the tunnel-liner system.Hydrostatic pressure is inevitable in the liner since underground water may penetrate the cracks of the tunnel,and reach the outer surface of the liner.In addition,an elevated temperature loading is taken into account,considering that fire may occur in the tunnel-liner system.Under the combination of mechanical loading and thermal loading,the liner deforms into a single-lobe shape,which is depicted by a trigonometric function.The total potential energy is expressed quantitatively after the energy approach and thin-walled shell theory are used.The minimum potential energy is obtained when the critical buckling occurs.The critical buckling pressure is calculated,which considers the effect of the thermal field.The present analytical prediction is subsequently compared precisely with other closed-form solutions.Finally,the effects of several parameters,such as the geometric shapes,temperature variations,and volume fraction indices,are discussed to further survey the buckling performance of the nonlinear buckling of an FGM polyhedral liner with an inverted arch.One may address a polyhedral liner with fewer polyhedral sides,and a lower volume fraction index is recommended to rehabilitate cracked tunnels in engineering applications. 展开更多
关键词 tunnel-liner system with an inverted arch volume fraction index mechanical and thermal loadings rehabilitation BUCKLING
下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
4
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 High energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Cracked elastic substrate strip with functionally graded coating under thermal-mechanical loading
5
作者 苗福生 刘俊俏 李星 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期451-456,共6页
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro... This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings. 展开更多
关键词 thermal-mechanical loading singular integral equations functionally graded coating thermal stress intensity factors (TSIFs)
下载PDF
Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures 被引量:8
6
作者 Mao Rongrong Mao Xianbiao +1 位作者 Zhang Lianying Liu Ruixue 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期797-801,共5页
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper... The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage. 展开更多
关键词 MUDSTONE High temperature loading rate Characteristics of thermal damage
下载PDF
Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 被引量:3
7
作者 Demin ZHAO Jianlin LIU C.Q.WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第8期1017-1032,共16页
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ... The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. 展开更多
关键词 thermal load parameter excited local bifurcation unfolding parameterspace physical parameter space
下载PDF
Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load 被引量:4
8
作者 林铁松 贾德昌 +1 位作者 何培刚 王美荣 《Journal of Central South University》 SCIE EI CAS 2009年第6期881-886,共6页
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up t... Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out. 展开更多
关键词 short carbon fiber Α-AL2O3 thermal-mechanical properties GEOPOLYMER thermal load
下载PDF
Local Bifurcation Analysis of Parameter-Excited Resonance of Pipes under Thermal Load 被引量:1
9
作者 赵德敏 刘宝山 《Transactions of Tianjin University》 EI CAS 2015年第4期324-332,共9页
The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is develop... The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability. 展开更多
关键词 thermal load parameter-excited RESONANCE local BIFURCATION critical thermal rate
下载PDF
Experimental study of transient thermal elastic hydrodynamic lubrication of tilted thrust bearing under sudden load changes 被引量:1
10
作者 马希直 朱均 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期48-52,共5页
An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of t... An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface. 展开更多
关键词 experimental study TRANSIENT thermal thrust bearing load
下载PDF
Cold Thermal Storage and Peak Load Reduction for Office Buildings in Saudi Arabia 被引量:1
11
作者 Nabil Y.Abdel-Shafi Ramzy R.Obaid Ibrahim M.Jomoah 《Journal of Electronic Science and Technology》 CAS 2014年第1期13-19,共7页
This paper the chilled water and involves the investigations of ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildi... This paper the chilled water and involves the investigations of ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildings in Saudi Arabia, so as to reduce the electricity energy consumption during the peak load periods. In Saudi Arabia, the extensive use of AC for indoor cooling in offices composes a large proportion of the annual peak electricity demand. The very high temperatures over long summer periods, extending tYom May to October, and the low cost of energy are the key factors in the wide and extensive use of air conditioners in the kingdom. This intense cooling load adds up to the requirement increase in the capacity of power plants, which makes them under utilized during the oil:peak periods. Thermal energy storage techniques are one of the effective demand-side energy management methods. Systems with cold storage shifts all or part of the electricity requirement from peak hours to off-peak hours to reduce demand charges and/or take advantage of off-peak rates. The investigations reveal that the cold thermal energy storage techniques are effective from both technical and economic perspectives in the reduction of energy consumption in the buildings during peak periods. 展开更多
关键词 hldex Termsold thermal storage demand sidemanagement peak load reduction thermal energystorage.
下载PDF
Influence of Thermal Load on Mechanical Property of Cemented Carbide Material and Heavy Cemented Carbide Inserts Life 被引量:2
12
作者 Yao-Nan Cheng Li Liu +3 位作者 Shou-Hui Sun Jun Qian Ya-Nan Gong Ming-Yang Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期59-66,共8页
A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load.The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,an... A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load.The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,and the results show that the bending strength and fracture toughness of cemented carbide material decrease obviously under cyclic thermal load,while in the cooling process,the material mechanical property changes worse suddenly.The high-temperature mechanical property of SCS is the most stable,and that of YT15 is the worst.Further,a relation model among cutting temperature,cutting parameters and insert life is established.Finally,the measures to improve heavy cemented carbide inserts life are summarized from the aspects of cutting parameters selection,insert optimization design and TiCN,Al2O3,TiN complex insert coating.The research results are expected to provide support and reference for heavy cutting technology and insert technology. 展开更多
关键词 thermal load cemented carbide mechanical property heavy cutting insert lifeCLC number:TG711 Document code:AArticle ID:1005-9113(2013)06-0059-08
下载PDF
Failure of EB-PVD Thermal Barrier Coatings Subjected to Thermo-Mechanical Loading 被引量:1
13
作者 CHEN Chen ZHANG Chun-xia GUO Hong-bo GONG Sheng-kai ZHANG Yue 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期82-85,共4页
Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ),... Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones. 展开更多
关键词 electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBCs) thermal-mechanical loading impedance spectroscopy FAILURE
下载PDF
A Study on the Relationship between Anodic Oxidation and the Thermal Load on the Aluminum Alloy Piston of a Gasoline Engine 被引量:1
14
作者 Huali Guo Yi Liang +1 位作者 Zhilong Zhang Yuanhua Chen 《Fluid Dynamics & Materials Processing》 EI 2022年第1期57-70,共14页
In order to analyze the influence of the anodizing process on the thermal load of an aluminum alloy piston,dedicated temperature tests have been carried out using the Hardness Plug method and the results for the anodi... In order to analyze the influence of the anodizing process on the thermal load of an aluminum alloy piston,dedicated temperature tests have been carried out using the Hardness Plug method and the results for the anodized piston have been compared with those obtained separately for an original aluminum piston.In addition,numerical simulations have been conducted to analyze the temperature field and thermal stress distribution.Simulations and experiments show that the maximum temperature of the anodized piston is 16.36%and 5.4%smaller than that of the original piston under the condition of maximum torque and maximum power,respectively.The thermal stress of the temperature field of both pistons is within 50 Mpa,which meets the strength requirements of the material at high temperature.However,the area with significant thermal stress of the anodized piston is significantly smaller than that of the original piston.Combined with the fatigue analysis data,it can be seen that the safety factor of the anodized piston greater than 1.8 is 99.13%.Therefore,adopting the anodizing process not only reduces the piston thermal load,but also helps to extend its life and improve its reliability. 展开更多
关键词 Alloy piston thermal load anodic oxidation hardness plug
下载PDF
Transverse Vibration and Stability Analysis of Circular Plate Subjected to Follower Force and Thermal Load 被引量:1
15
作者 Yongqiang Yang Zhongmin Wang 《Sound & Vibration》 2019年第3期51-64,共14页
Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of... Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established.Then,the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method.Meanwhile,the generalized eigenvalue under three different boundary conditions are calculated.In this case,the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed.The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge,clamped edge and free edge are discussed.The results provide theoretical basis for improving the dynamic stability of the circular plate. 展开更多
关键词 Circular plate transverse vibration follower force thermal load differential quadrature method STABILITY
下载PDF
Experimental Measurements of the Sensitivity of Fiber-optic Bragg Grating Sensors with a Soft Polymeric Coating under Mechanical Loading,Thermal and Magnetic under Cryogenic Conditions 被引量:2
16
作者 关明智 王省哲 +2 位作者 辛灿杰 周又和 马力祯 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期140-144,共5页
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo... The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods. 展开更多
关键词 FBG net Experimental Measurements of the Sensitivity of Fiber-optic Bragg Grating Sensors with a Soft Polymeric Coating under Mechanical loading thermal and Magnetic under Cryogenic Conditions
下载PDF
Effect of Thermal Cycling under Load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy 被引量:1
17
作者 Liming WANG, Yufeng ZHENG, Wei CAI, Xianglong MENG and Liancheng ZHAO School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期263-266,共4页
The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increa... The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations. 展开更多
关键词 TINI Effect of thermal Cycling under load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy
下载PDF
INFLUENCE OF TEMPERATURE-DEPENDENT PROPERTIES ON THERMAL STRESSES RESPONSE AND OPTIMUM DESIGN OF C/M FGMS UNDER THERMAL CYCLIC LOADING
18
作者 翟鹏程 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第4期7-13,共7页
The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradie... The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory. 展开更多
关键词 functionally graded materials temperature-dependent properties cyclic thermal loading thermal stresses response
下载PDF
THERMAL CONSOLIDATION OF LAYERED POROUS HALF-SPACE TO VARIABLE THERMAL LOADING
19
作者 白冰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第11期1531-1539,共9页
An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influ... An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on 展开更多
关键词 thermal loading half-space body porous medium numerical integration
下载PDF
INFLUENCE OF TEMPERATURE-DEPENDENT PROPERTIES ON TEMPERATURE RESPONSE AND OPTIMUM DESIGN OF C/M FGMS UNDER THERMAL CYCLIC LOADING
20
作者 翟鹏程 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第3期19-25,共7页
The influence of temperature-dependent properties on temperature response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loading and high temperature gradient en... The influence of temperature-dependent properties on temperature response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loading and high temperature gradient environment is studied. The thermal conductivity of the material is considered to be dependent on the temperature. In this paper, the temperature response of the material is calculated using a nonlinear finite element method. Emphasis is placed on the influence of temperatue-dependent properties on the thermal response and insulation property of the material render the different graded compositional distributions and different heat flux magnitudes. Through the analysis, it is suggested that the influence of temperature-dependent properties can not be neglected in the temperature response analysis and the optimum design process of the material must be based on the temperature-dependent temperature analysis theory. 展开更多
关键词 functionally graded materials temperature-dependent properties cyclic thermal load temperature response
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部