The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch...In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms.展开更多
The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The ...The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The blood is considered as the base Carreau non-Newtonian fluid and gold (Au) as nanoparticles stressed upon. The Fronchiener effect of the non-Darcian medium is taken in consideration. The system is stressed upon a strong magnetic field and the Hall currents are completed. The problem is modulated mathematically by a system of non-linear partial differential equations which describe the fluid velocity, temperature and concentration. The system is reformulated under the approximation of long wavelength and low Reynolds number. It is solved on using multi-step differential transform method (Ms-DTM) as a semi-analytical method. A gold nanoparticle has increased the temperature distribution which is of great importance in destroying the cancer cells.展开更多
This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field...This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation,Joule heating and viscous dissipation.Silver(Ag),copper(Cu),copper oxide(Cu O),aluminum oxide(Al_2O_3)and titanium dioxide(Ti O_2)have been taken under consideration as the nanoparticles and water(H_2O)as the base fluid.Using suitable similarity transformations,the governing partial differential equations(PDEs)of the modeled problem are transformed to the ordinary differential equations(ODEs).These ODEs are then solved numerically by applying the shooting method.For the particular situation,the results are compared with the available literature.The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically.It is witnessed that the skin friction coefficient is maximum for silver based nanofluid.Also,the velocity profile is found to diminish for the increasing values of the magnetic parameter.展开更多
This article addresses the two-dimensional laminar boundary layer flow of magnetohydrodynamic (MHD) Jeffrey nano- fluid with mixed convection. Effects of thermal radiation, thermophoresis, Brownian motion and double...This article addresses the two-dimensional laminar boundary layer flow of magnetohydrodynamic (MHD) Jeffrey nano- fluid with mixed convection. Effects of thermal radiation, thermophoresis, Brownian motion and double stratifications are taken into account. Rosseland's approximation is utilized for the thermal radiation phenomenon. Convergent series solutions of velocity, tempe- rature and nanoparticle concentration are developed. Graphs of dimensionless temperature and nanoparticle concentration are prese- nted to investigate the influences of different emerging parameters. The values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed for both Jeffrey and viscous fluids cases. We have observed that the temperature profile retarded for the larger values of Deborah number while an enhancement is noticed with the increasing values of ratio of relaxation to retardation times. Increasing values of thermal and nanoparticle concentration stratifications lead to a reduction in the temperature and nanoparticle concentration. The values of local Nusselt and Sherwood numbers are larger for the viscous fluid case when compared with Jeffrey fluid.展开更多
相较于水、乙二醇等常规流体,纳米流体出色的传热效果使其成为近十年来研究的热点之一。利用一种反扰动非平衡分子动力学方法对纳米流体的导热增强机理进行了模拟研究。在基液Ar 中加入 Cu 纳米颗粒后,纳米流体的热通量和热导率均发生...相较于水、乙二醇等常规流体,纳米流体出色的传热效果使其成为近十年来研究的热点之一。利用一种反扰动非平衡分子动力学方法对纳米流体的导热增强机理进行了模拟研究。在基液Ar 中加入 Cu 纳米颗粒后,纳米流体的热通量和热导率均发生了不同程度的改变,纳米颗粒体积分数的变化,在一定程度上改变了纳米流体内部的能量传递过程。进一步分析了纳米流体热导率强化的微观作用机理,发现纳米颗粒的加入,使得纳米流体的微观结构具有了类似晶体的微观结构特性,在颗粒尺寸较小的情况下,流体内部受温度梯度作用效应明显。展开更多
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
文摘In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms.
文摘The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The blood is considered as the base Carreau non-Newtonian fluid and gold (Au) as nanoparticles stressed upon. The Fronchiener effect of the non-Darcian medium is taken in consideration. The system is stressed upon a strong magnetic field and the Hall currents are completed. The problem is modulated mathematically by a system of non-linear partial differential equations which describe the fluid velocity, temperature and concentration. The system is reformulated under the approximation of long wavelength and low Reynolds number. It is solved on using multi-step differential transform method (Ms-DTM) as a semi-analytical method. A gold nanoparticle has increased the temperature distribution which is of great importance in destroying the cancer cells.
文摘This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation,Joule heating and viscous dissipation.Silver(Ag),copper(Cu),copper oxide(Cu O),aluminum oxide(Al_2O_3)and titanium dioxide(Ti O_2)have been taken under consideration as the nanoparticles and water(H_2O)as the base fluid.Using suitable similarity transformations,the governing partial differential equations(PDEs)of the modeled problem are transformed to the ordinary differential equations(ODEs).These ODEs are then solved numerically by applying the shooting method.For the particular situation,the results are compared with the available literature.The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically.It is witnessed that the skin friction coefficient is maximum for silver based nanofluid.Also,the velocity profile is found to diminish for the increasing values of the magnetic parameter.
文摘This article addresses the two-dimensional laminar boundary layer flow of magnetohydrodynamic (MHD) Jeffrey nano- fluid with mixed convection. Effects of thermal radiation, thermophoresis, Brownian motion and double stratifications are taken into account. Rosseland's approximation is utilized for the thermal radiation phenomenon. Convergent series solutions of velocity, tempe- rature and nanoparticle concentration are developed. Graphs of dimensionless temperature and nanoparticle concentration are prese- nted to investigate the influences of different emerging parameters. The values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed for both Jeffrey and viscous fluids cases. We have observed that the temperature profile retarded for the larger values of Deborah number while an enhancement is noticed with the increasing values of ratio of relaxation to retardation times. Increasing values of thermal and nanoparticle concentration stratifications lead to a reduction in the temperature and nanoparticle concentration. The values of local Nusselt and Sherwood numbers are larger for the viscous fluid case when compared with Jeffrey fluid.
文摘相较于水、乙二醇等常规流体,纳米流体出色的传热效果使其成为近十年来研究的热点之一。利用一种反扰动非平衡分子动力学方法对纳米流体的导热增强机理进行了模拟研究。在基液Ar 中加入 Cu 纳米颗粒后,纳米流体的热通量和热导率均发生了不同程度的改变,纳米颗粒体积分数的变化,在一定程度上改变了纳米流体内部的能量传递过程。进一步分析了纳米流体热导率强化的微观作用机理,发现纳米颗粒的加入,使得纳米流体的微观结构具有了类似晶体的微观结构特性,在颗粒尺寸较小的情况下,流体内部受温度梯度作用效应明显。