A new type of neutron detector based on monocrystalline Si is developed to measure the fluence and flux density of thermal and fast neutrons.The principle of this detector is based on the relationship between changes ...A new type of neutron detector based on monocrystalline Si is developed to measure the fluence and flux density of thermal and fast neutrons.The principle of this detector is based on the relationship between changes in electrical conductivity and neutron fluence during irradiation.Therefore,the absolute values of thermal neutron fluence and flux density are measured in a facile manner with high reliability.Compared with activation methods,our method not only possesses a similar accuracy,but also demonstrates superior application potential for the investigation of neutron fields in nuclear reactors owing to its suitable half-life.展开更多
A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that ...A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.展开更多
Thermal neutron radiography is a useful complementary tool of the other non-destructive testing methods for the hydrogenous materials and heavy metal subassembly.By the use of MC method program and the thermal neutron...Thermal neutron radiography is a useful complementary tool of the other non-destructive testing methods for the hydrogenous materials and heavy metal subassembly.By the use of MC method program and the thermal neutron digital radiography facility at SPRR-300 reactor,the simulation and experimental study of the thermal neutron tomography has been developed.Its method and result has been introduced and analyzed.展开更多
Because of 3He shortage,sintillator is a promising alternative choice for neutron detection in the field of thermal neutron scattering and imaging.Also,the neutron detection efficiency is difficult to be determined.In...Because of 3He shortage,sintillator is a promising alternative choice for neutron detection in the field of thermal neutron scattering and imaging.Also,the neutron detection efficiency is difficult to be determined.In this paper,the efficiency for thermal neutron detection is presented by inorganic scintillator using probability principles,supposed that the material of scintillator is uniform in element distribution,and that attenuation length of scintillation light is longer than that of its thickness in the scintillator.The efficiencies for two pieces of lithium glass are determined by this method,indicating the method is useful for determining efficiency of thermal neutron detections.展开更多
Boron carbide/natural rubber latex(B_4 C/NRL)flexible films were prepared via dip-molding with B_4 C content in the range of 5–55 wt% for thermal neutron(0.0253 e V) shielding. B_4 C was well dispersed in NRL accordi...Boron carbide/natural rubber latex(B_4 C/NRL)flexible films were prepared via dip-molding with B_4 C content in the range of 5–55 wt% for thermal neutron(0.0253 e V) shielding. B_4 C was well dispersed in NRL according to microscopic observation. Both the inside and outside surfaces of the film were smooth. For B_4 C/NRL flexible films, the minimum elongation at break was greater than 600%, the minimum tensile strength was greater than 12 MPa, and the hardness was in the range of 35–55 HA,which were suitable for preparing flexible wearable products. The attenuation efficiencies of the B_4 C/NRL flexible films for thermal neutrons were also calculated. The B_4 C/NRL flexible films exhibit good attenuation effect for thermal neutrons.展开更多
Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equati...Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equation. The bi-material reflector consists of binary combinations of water, graphite, lead, and polyethylene. An experimental measurement of thermal neutron albedo has also been conducted for mono-material and bi-material reflectors by using a^(241) Am–Be(5.2 Ci) neutron source and a BF3 detector. The maximum value of thermal neutron albedo was obtained for a polyethylene–water combination(0.95 ± 0.02).展开更多
CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector w...CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector were 4 h, 8 h, 16 h and 24 h. The track detector has been etched with sodium hydroxide. After chemical etching of the irradiated CN-85 detector, the images have been taken from a digital camera connected to the optical microscope. Image processing for the output images has been performed using MATALB program, and these images were analyzed and we had found the following relations: a) The relation between summation of opened track or surface density for tracks (intensity-IT) varies with radius of opening (track radius-RT). b) The relation between the tracks number-NT varies with the tracks diameter-DT (in micrometer) and tracks area-AT. That analysis of image processing was obtained, and the track intensity-IT was decreased with increase of track radius-RT at all of the irradiation time-TD. And the track intensity-IT was increased with increasing irradiation time-TD (h) for different track radius-RT (0.4225, 0.845, 1.2675 and 1.69 μm). The study indicates the possibility of using the analysis of image processing to CN-85 detector for classification of α-particle emitters through limitation of radius of track-RT, in addition to the contribution of these techniques in preparation of nano-filters and nono-membrane in nanotechnology fields.展开更多
The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N...The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N) was an irradiation PM-355 detector by gamma radiation and then irradiation by thermal neutrons, and another method (N + G) was irradiated by thermal neutrons and then gamma radiation. FTIR-spectroscopy was used to measure the change in deferent of transmission percent ΔT% at the wavenumber 1260 cm-1 with wavenumber 2962 cm-1 [ΔT%]1260-2962 and wavenumber 1138 cm-1 [ΔT%]1260-1138. The values of [ΔT%]1260-2962 and [ΔT%]1260-1138 were increasing with the increase of gamma irradiation with maximum response at 820 kGy and then drop after this dose until to 1600 kGy. This study determined the linear equations relation between the effect of gamma radiation on PM-355 detector and the change of [ΔT%]1260-2962 and [ΔT%]1260-1138, and this change appeared in (N + G) irradiation method better than in (G + N) irradiation method. The appearance of wavenumber 2964 cm-1 in (G + N) irradiation method referred to alkyl asymmetry C-H bond stretched out of skelated plane after changes in chemical structure of PM-355 detector by gamma or neutrons radiation.展开更多
Thermal neutron capture can be used as a successful technique for detection of non-metallic landmines via the detection of their constituent like nitrogen. Recently, it has been shown that the detection of 10.829 MeV ...Thermal neutron capture can be used as a successful technique for detection of non-metallic landmines via the detection of their constituent like nitrogen. Recently, it has been shown that the detection of 10.829 MeV photons from the 14N(n,γ)15N reaction can be used for finding the landmines. In this method a high-energy neutron source like 241Am-Be inside water as a moderator is used to have thermal neutron. In this paper we have investigated the effects of the number of neutron sources and their orientation on the gamma ray spectrum by using MCNP4C code. The best case for number of sources and their positions and orientations have been achieved corresponding to maximum flux of 10.829 MeV photons.展开更多
New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presen...New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presented. The simulation results demonstrate the dependence of the autowave combustion modes on the parameters of the external source.展开更多
An event-counting thermal neutron imaging detector based on 3 mol % nattGd2O3-doped micro-channel plate (MCP) has been developed and tested. A thermal neutron imaging experiment was carried out with a low flux neutr...An event-counting thermal neutron imaging detector based on 3 mol % nattGd2O3-doped micro-channel plate (MCP) has been developed and tested. A thermal neutron imaging experiment was carried out with a low flux neutron beam. Detection efficiency of 33% was achieved with only one doped MCP. The spatial resolution of 72μ m RMS is currently limited by the readout anode. A detector with larger area and improved readout method is now being developed.展开更多
A new thermal neutron detector with a domestically produced THGEM (Thick Gas Electron Multiplier) was developed as an alternative to 3He to meet the needs of the next generation of neutron facilities. One type of Au...A new thermal neutron detector with a domestically produced THGEM (Thick Gas Electron Multiplier) was developed as an alternative to 3He to meet the needs of the next generation of neutron facilities. One type of Au-coated THGEM was designed specifically for neutron detection. A detector prototype has been developed and the preliminary experimental tests are presented, including the performance of the Au-coated THGEM working in At/CO2 gas mixtures and the neutron imaging test with 252 Cf source, which can provide the reference for experimental data for research in the future.展开更多
We present the design and optimization of a prompt T-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderat...We present the design and optimization of a prompt T-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PCNAA 2526f neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved per- formance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.展开更多
We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection...We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection because of their high neutron capture absorption coefficient. By using a neutron source 252Cf and a paraffin moderator in an alignment system, we can get a small beam of thermal neutrons. A flash ADC is used to measure the thermal neutron spectrum of each detector, and the detected number of events is determined from the spectrum, then we can calculate the detection efficiency of different detectors. Meanwhile, the experiment has been modeled with GEANT4 to validate the results against the Monte Carlo simulation.展开更多
The BESⅢ ·RPC with Gd coating as thermal neutron detector was designed and constructed. Three prototypes were built with different techniques of producing the gadolinium converter. The performance of the cosmic ...The BESⅢ ·RPC with Gd coating as thermal neutron detector was designed and constructed. Three prototypes were built with different techniques of producing the gadolinium converter. The performance of the cosmic ray test, the signal and the radiation spectrum were discussed in this paper. Lastly, the efficiency of one prototype with the best performance for detecting the thermal neutron was tested as 8.7%.展开更多
In this work, the polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection were successfully fabricated by electrospunning and followed by in situ self-polymerization. Scanning electron micros...In this work, the polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection were successfully fabricated by electrospunning and followed by in situ self-polymerization. Scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS) results show that there are no beads on the smooth surface of the nanofibers and gadolinium elements are uniformly dispersed in the matrix. The thermal analysis and FTIR results prove that gadolinium methacrylate is induced in situ selfpolymerization during the heat treatment. The leaching rate of Gd^(3+) decreases from 79.97% to 10.74% tested by lowfield nuclear magnetic resonance(LF-NMR) method after the self-polymerization of gadolinium methacrylate in the matrix when the nanofibers were immersed in water for7 days. The thermal neutron shielding analysis calculated by MCNP program shows that above 99% thermal neutrons are absorbed when traveling through the 2-mm-thick polyacrylonitrile containing gadolinium nanofibers.展开更多
Water movement in porous cement-based materials is of great importance when studying their deterioration processes and durability.Many traditional methods based on mass changes,electricity or nuclear magnetic resonanc...Water movement in porous cement-based materials is of great importance when studying their deterioration processes and durability.Many traditional methods based on mass changes,electricity or nuclear magnetic resonances are available for studying water transport in cement-based materials.In this research,an advanced technique i.e.thermal neutron radiography was utilized to achieve visualization and quantification of time dependent water movement including water penetration and moisture vapor in porous cement-based materials through theoretical analysis and experimental study.Because thermal neutrons ex-perience a strong attenuation by hydrogen,neutron radiography exhibits high sensitivity to small amounts of water.A neutron transmission analysis for quantitative evaluation of raw radiographic measurements was developed and optimized based on point scattered functions(PScF).The determinations of the real time and space dependent water penetration into uncracked and cracked mortar samples,as well as the drying process have been presented in this paper.It is illustrated that thermal neutron radiography can be a useful research tool for visualization and quantification of water movement in porous building materials.The obtained results will help us to better understand deteriorating processes of cement-based materials and to find ways to improve their durability.展开更多
The distribution of the neutron spectra in the thermal column hole of Xi'an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron...The distribution of the neutron spectra in the thermal column hole of Xi'an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.展开更多
This paper presents a comparative analysis of different parameters such as enthalpy, moderator temperature, moderator density, flow velocity, pressure, and fuel temperature profile at the fuel pin cell level of PWR. M...This paper presents a comparative analysis of different parameters such as enthalpy, moderator temperature, moderator density, flow velocity, pressure, and fuel temperature profile at the fuel pin cell level of PWR. Moreover, in this paper pitches to fuel pin radius ratio are varied from 2.3 to 4. The methods and implementation strategy are such that the coupled neutronic and thermal-hydraulic analysis is executed in a fully one dimensional (1D) manner. The thermal hydraulic is based on moderator/coolant mass and enthalpy equation together with one group diffusion equation for fuel pin. Modelling of fuel pin cell and subchannel is executed in two steps. First, the governing equations are derived assuming that all the parameters appearing in the equations are temperature independent. Fuel pin centerline temperature and radially averaged temperature equations are derived from Fourier laws of thermal conductivity. Finally, diffusion coefficient, fission cross-section and absorbing cross-section are evaluated with respect to the fuel pin temperature. The outcome will be helpful for further neutronics and thermal analysis of PWR. Thermal hydraulics parameter varies the maximum 30 percentage from the lowermost value.展开更多
Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibr...Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibrium and thermal evolution of neutron stars with decaying magnetic fields. We find that the power-law long term decay of the magnetic field slightly affects the deviation from chemical equilibrium and surface temperature. However, the magnetic decay leads to older neutron stars that could have a different surface temperature with the same magnetic field strength. That is, older neutron stars with a low magnetic field (10^8 G) could have a lower temper- ature even with rotochemical heating in operation, which probably explains the lack of other observations on older millisecond pulsars with higher surface temperature, except millisecond pulsar J0437-4715.展开更多
基金the support of the TPU Competitiveness Improvement Program(2030).
文摘A new type of neutron detector based on monocrystalline Si is developed to measure the fluence and flux density of thermal and fast neutrons.The principle of this detector is based on the relationship between changes in electrical conductivity and neutron fluence during irradiation.Therefore,the absolute values of thermal neutron fluence and flux density are measured in a facile manner with high reliability.Compared with activation methods,our method not only possesses a similar accuracy,but also demonstrates superior application potential for the investigation of neutron fields in nuclear reactors owing to its suitable half-life.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61964001 and 61961001)the State Key Laboratory of Particle Detection and Electronics(Grant No.SKLPDE-KF-2019)+2 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20192BAB207033 and 20181BAB202026)the Foundation of State Key Laboratory Breeding Base of Nuclear Resources and Environment(East China Institute of Technology)(Grant No.NRE1515)the Jiangxi Provincial Postdoctoral Science Foundation,China(Grant No.2018KY31).
文摘A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.
基金Supported by the development fund of Science and Technology of China Academy of Engineering Physics.The project number:250
文摘Thermal neutron radiography is a useful complementary tool of the other non-destructive testing methods for the hydrogenous materials and heavy metal subassembly.By the use of MC method program and the thermal neutron digital radiography facility at SPRR-300 reactor,the simulation and experimental study of the thermal neutron tomography has been developed.Its method and result has been introduced and analyzed.
基金Supported by the National Natural Science Foundation of China(Grant No.10875140)
文摘Because of 3He shortage,sintillator is a promising alternative choice for neutron detection in the field of thermal neutron scattering and imaging.Also,the neutron detection efficiency is difficult to be determined.In this paper,the efficiency for thermal neutron detection is presented by inorganic scintillator using probability principles,supposed that the material of scintillator is uniform in element distribution,and that attenuation length of scintillation light is longer than that of its thickness in the scintillator.The efficiencies for two pieces of lithium glass are determined by this method,indicating the method is useful for determining efficiency of thermal neutron detections.
基金supported by the National Natural Science Foundation of China(No.11405149)the Sichuan Academic and Technical Leader Program(No.DTR201501)
文摘Boron carbide/natural rubber latex(B_4 C/NRL)flexible films were prepared via dip-molding with B_4 C content in the range of 5–55 wt% for thermal neutron(0.0253 e V) shielding. B_4 C was well dispersed in NRL according to microscopic observation. Both the inside and outside surfaces of the film were smooth. For B_4 C/NRL flexible films, the minimum elongation at break was greater than 600%, the minimum tensile strength was greater than 12 MPa, and the hardness was in the range of 35–55 HA,which were suitable for preparing flexible wearable products. The attenuation efficiencies of the B_4 C/NRL flexible films for thermal neutrons were also calculated. The B_4 C/NRL flexible films exhibit good attenuation effect for thermal neutrons.
文摘Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equation. The bi-material reflector consists of binary combinations of water, graphite, lead, and polyethylene. An experimental measurement of thermal neutron albedo has also been conducted for mono-material and bi-material reflectors by using a^(241) Am–Be(5.2 Ci) neutron source and a BF3 detector. The maximum value of thermal neutron albedo was obtained for a polyethylene–water combination(0.95 ± 0.02).
文摘CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector were 4 h, 8 h, 16 h and 24 h. The track detector has been etched with sodium hydroxide. After chemical etching of the irradiated CN-85 detector, the images have been taken from a digital camera connected to the optical microscope. Image processing for the output images has been performed using MATALB program, and these images were analyzed and we had found the following relations: a) The relation between summation of opened track or surface density for tracks (intensity-IT) varies with radius of opening (track radius-RT). b) The relation between the tracks number-NT varies with the tracks diameter-DT (in micrometer) and tracks area-AT. That analysis of image processing was obtained, and the track intensity-IT was decreased with increase of track radius-RT at all of the irradiation time-TD. And the track intensity-IT was increased with increasing irradiation time-TD (h) for different track radius-RT (0.4225, 0.845, 1.2675 and 1.69 μm). The study indicates the possibility of using the analysis of image processing to CN-85 detector for classification of α-particle emitters through limitation of radius of track-RT, in addition to the contribution of these techniques in preparation of nano-filters and nono-membrane in nanotechnology fields.
文摘The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N) was an irradiation PM-355 detector by gamma radiation and then irradiation by thermal neutrons, and another method (N + G) was irradiated by thermal neutrons and then gamma radiation. FTIR-spectroscopy was used to measure the change in deferent of transmission percent ΔT% at the wavenumber 1260 cm-1 with wavenumber 2962 cm-1 [ΔT%]1260-2962 and wavenumber 1138 cm-1 [ΔT%]1260-1138. The values of [ΔT%]1260-2962 and [ΔT%]1260-1138 were increasing with the increase of gamma irradiation with maximum response at 820 kGy and then drop after this dose until to 1600 kGy. This study determined the linear equations relation between the effect of gamma radiation on PM-355 detector and the change of [ΔT%]1260-2962 and [ΔT%]1260-1138, and this change appeared in (N + G) irradiation method better than in (G + N) irradiation method. The appearance of wavenumber 2964 cm-1 in (G + N) irradiation method referred to alkyl asymmetry C-H bond stretched out of skelated plane after changes in chemical structure of PM-355 detector by gamma or neutrons radiation.
文摘Thermal neutron capture can be used as a successful technique for detection of non-metallic landmines via the detection of their constituent like nitrogen. Recently, it has been shown that the detection of 10.829 MeV photons from the 14N(n,γ)15N reaction can be used for finding the landmines. In this method a high-energy neutron source like 241Am-Be inside water as a moderator is used to have thermal neutron. In this paper we have investigated the effects of the number of neutron sources and their orientation on the gamma ray spectrum by using MCNP4C code. The best case for number of sources and their positions and orientations have been achieved corresponding to maximum flux of 10.829 MeV photons.
文摘New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presented. The simulation results demonstrate the dependence of the autowave combustion modes on the parameters of the external source.
基金Supported by National Natural Science Foundation of China(10735020,11075026)
文摘An event-counting thermal neutron imaging detector based on 3 mol % nattGd2O3-doped micro-channel plate (MCP) has been developed and tested. A thermal neutron imaging experiment was carried out with a low flux neutron beam. Detection efficiency of 33% was achieved with only one doped MCP. The spatial resolution of 72μ m RMS is currently limited by the readout anode. A detector with larger area and improved readout method is now being developed.
基金Supported by National Natural Science Foundation of China(11127508,11175199)NPL,CAEP(2013DB06)State Key Laboratory of particle Detection and Electronics(H9294206TD)
文摘A new thermal neutron detector with a domestically produced THGEM (Thick Gas Electron Multiplier) was developed as an alternative to 3He to meet the needs of the next generation of neutron facilities. One type of Au-coated THGEM was designed specifically for neutron detection. A detector prototype has been developed and the preliminary experimental tests are presented, including the performance of the Au-coated THGEM working in At/CO2 gas mixtures and the neutron imaging test with 252 Cf source, which can provide the reference for experimental data for research in the future.
基金Supported by National Natural Science Foundation of China(41274109,41025015,41374112,11105132,41104118)
文摘We present the design and optimization of a prompt T-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PCNAA 2526f neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved per- formance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.
基金National Natural Science Foundation of China (11061140514)
文摘We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection because of their high neutron capture absorption coefficient. By using a neutron source 252Cf and a paraffin moderator in an alignment system, we can get a small beam of thermal neutrons. A flash ADC is used to measure the thermal neutron spectrum of each detector, and the detected number of events is determined from the spectrum, then we can calculate the detection efficiency of different detectors. Meanwhile, the experiment has been modeled with GEANT4 to validate the results against the Monte Carlo simulation.
文摘The BESⅢ ·RPC with Gd coating as thermal neutron detector was designed and constructed. Three prototypes were built with different techniques of producing the gadolinium converter. The performance of the cosmic ray test, the signal and the radiation spectrum were discussed in this paper. Lastly, the efficiency of one prototype with the best performance for detecting the thermal neutron was tested as 8.7%.
基金financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYLX_1337)the Excellent Doctorial Dissertations Fund of Yangzhou University
文摘In this work, the polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection were successfully fabricated by electrospunning and followed by in situ self-polymerization. Scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS) results show that there are no beads on the smooth surface of the nanofibers and gadolinium elements are uniformly dispersed in the matrix. The thermal analysis and FTIR results prove that gadolinium methacrylate is induced in situ selfpolymerization during the heat treatment. The leaching rate of Gd^(3+) decreases from 79.97% to 10.74% tested by lowfield nuclear magnetic resonance(LF-NMR) method after the self-polymerization of gadolinium methacrylate in the matrix when the nanofibers were immersed in water for7 days. The thermal neutron shielding analysis calculated by MCNP program shows that above 99% thermal neutrons are absorbed when traveling through the 2-mm-thick polyacrylonitrile containing gadolinium nanofibers.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No.2009CB623203)the National Natural Science Foundation of China (Grant Nos.50739001,50708046)the Natural Science Foundation of Shandong Province (Grant Nos.ZR2009FQ014,ZR2009FQ011)
文摘Water movement in porous cement-based materials is of great importance when studying their deterioration processes and durability.Many traditional methods based on mass changes,electricity or nuclear magnetic resonances are available for studying water transport in cement-based materials.In this research,an advanced technique i.e.thermal neutron radiography was utilized to achieve visualization and quantification of time dependent water movement including water penetration and moisture vapor in porous cement-based materials through theoretical analysis and experimental study.Because thermal neutrons ex-perience a strong attenuation by hydrogen,neutron radiography exhibits high sensitivity to small amounts of water.A neutron transmission analysis for quantitative evaluation of raw radiographic measurements was developed and optimized based on point scattered functions(PScF).The determinations of the real time and space dependent water penetration into uncracked and cracked mortar samples,as well as the drying process have been presented in this paper.It is illustrated that thermal neutron radiography can be a useful research tool for visualization and quantification of water movement in porous building materials.The obtained results will help us to better understand deteriorating processes of cement-based materials and to find ways to improve their durability.
文摘The distribution of the neutron spectra in the thermal column hole of Xi'an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.
文摘This paper presents a comparative analysis of different parameters such as enthalpy, moderator temperature, moderator density, flow velocity, pressure, and fuel temperature profile at the fuel pin cell level of PWR. Moreover, in this paper pitches to fuel pin radius ratio are varied from 2.3 to 4. The methods and implementation strategy are such that the coupled neutronic and thermal-hydraulic analysis is executed in a fully one dimensional (1D) manner. The thermal hydraulic is based on moderator/coolant mass and enthalpy equation together with one group diffusion equation for fuel pin. Modelling of fuel pin cell and subchannel is executed in two steps. First, the governing equations are derived assuming that all the parameters appearing in the equations are temperature independent. Fuel pin centerline temperature and radially averaged temperature equations are derived from Fourier laws of thermal conductivity. Finally, diffusion coefficient, fission cross-section and absorbing cross-section are evaluated with respect to the fuel pin temperature. The outcome will be helpful for further neutronics and thermal analysis of PWR. Thermal hydraulics parameter varies the maximum 30 percentage from the lowermost value.
基金funded by the National Natural Science Foundation of China (NSFC, No. 11347108)the Fundamental Research Funds for the Central Universities (No. 2014QC014)the key program project of the Joint Fund of Astronomy by NSFC and the Chinese Academy of Sciences (No. 11178001)
文摘Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibrium and thermal evolution of neutron stars with decaying magnetic fields. We find that the power-law long term decay of the magnetic field slightly affects the deviation from chemical equilibrium and surface temperature. However, the magnetic decay leads to older neutron stars that could have a different surface temperature with the same magnetic field strength. That is, older neutron stars with a low magnetic field (10^8 G) could have a lower temper- ature even with rotochemical heating in operation, which probably explains the lack of other observations on older millisecond pulsars with higher surface temperature, except millisecond pulsar J0437-4715.