Most of the expressions describing fire plumes reported in the literature are known to be based on experiments. Due to different experimental methods, the geometry of the fire sources, fuel types and surrounding condi...Most of the expressions describing fire plumes reported in the literature are known to be based on experiments. Due to different experimental methods, the geometry of the fire sources, fuel types and surrounding conditions, it is difficult to derive a comprehensive picture of a plume with its temperature and velocity fields on the basis of existing theoretical work. Computational Fluid Dynamics (CFD), which is regarded as a practical engineering tool in fire engineering by the experts, is sure to be able to give more details of the plume behavior under various situations. Aerodynamics for thermally-induced plumes will be studied numerically with CFD. Four typical axisymmetric plume equations will be assessed in this paper, and investigations will be useful for fire engineers in designing smoke management systems in an affordable fashion. This is a critical point in implementing engineering performance-based fire code.展开更多
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sen...The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work,with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 k W m^(-2) and 0.3 k W m^(-2) for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model(EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.展开更多
The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then ...The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh-Bénard configuration.展开更多
The time evolution of a two-dimensional line thermal-a turbulent flow produced by an initial element with significant buoyancy released in a large water body, is numerically studied with the two-equation k - epsilon m...The time evolution of a two-dimensional line thermal-a turbulent flow produced by an initial element with significant buoyancy released in a large water body, is numerically studied with the two-equation k - epsilon model for turbulence closure. The numerical results show that the thermal is characterized by a vortex pair flow and a kidney shaped concentration structure with double peak maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless time around 10. There are two regions in the flow field of a line thermal: a mixing region where the concentration of tracer fluid is high and the flow is turbulent and rotational with a pair of vortex eyes, and an ambient region where the concentration is zero and the flow is potential and well-described by a model of doublet with strength very close to those given by early experimental and analytical studies. The added virtual mass coefficient of the thermal motion is found to be approximately 1. The aspect ratio for the kidney-shaped sectional thermal is found to be around 1.45 for the self-similar phase. The predicted thermal spreading and mixing rate compares well with experimental data.展开更多
文摘Most of the expressions describing fire plumes reported in the literature are known to be based on experiments. Due to different experimental methods, the geometry of the fire sources, fuel types and surrounding conditions, it is difficult to derive a comprehensive picture of a plume with its temperature and velocity fields on the basis of existing theoretical work. Computational Fluid Dynamics (CFD), which is regarded as a practical engineering tool in fire engineering by the experts, is sure to be able to give more details of the plume behavior under various situations. Aerodynamics for thermally-induced plumes will be studied numerically with CFD. Four typical axisymmetric plume equations will be assessed in this paper, and investigations will be useful for fire engineers in designing smoke management systems in an affordable fashion. This is a critical point in implementing engineering performance-based fire code.
基金National Natural Science Foundation of China (No. 12005087)the Science and Technology Program of Gansu Province (Nos. 2006ZCTF0054, HTKJ2019KL510003, and 20JR10RA478)。
文摘The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work,with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 k W m^(-2) and 0.3 k W m^(-2) for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model(EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.
基金supported by the Research Grants Council of Hong Kongin particular through the General Research Funds (CUHK403811 and CUHK403712)through the NSFC/RGC Joint Research Scheme (N CUHK462/11)
文摘The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh-Bénard configuration.
基金The project was supported by the Hong Kong Research Grants Council and in part by the Trans-Century Foundation for Outstanding Young Teachers sponsored by the National Education Ministry of China and a grant(No.1999043605)from the National 973 Projects o
文摘The time evolution of a two-dimensional line thermal-a turbulent flow produced by an initial element with significant buoyancy released in a large water body, is numerically studied with the two-equation k - epsilon model for turbulence closure. The numerical results show that the thermal is characterized by a vortex pair flow and a kidney shaped concentration structure with double peak maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless time around 10. There are two regions in the flow field of a line thermal: a mixing region where the concentration of tracer fluid is high and the flow is turbulent and rotational with a pair of vortex eyes, and an ambient region where the concentration is zero and the flow is potential and well-described by a model of doublet with strength very close to those given by early experimental and analytical studies. The added virtual mass coefficient of the thermal motion is found to be approximately 1. The aspect ratio for the kidney-shaped sectional thermal is found to be around 1.45 for the self-similar phase. The predicted thermal spreading and mixing rate compares well with experimental data.