Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, ...Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.展开更多
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are o...Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.展开更多
The electrostatic potential energy model of hydrotalcites was based on the theory of crystallography. The anionic potential energy of MgAl-hydrotalcites, with 20 layers and 2107 anions per layer, was calculated, and t...The electrostatic potential energy model of hydrotalcites was based on the theory of crystallography. The anionic potential energy of MgAl-hydrotalcites, with 20 layers and 2107 anions per layer, was calculated, and the anionic stability of the hydrotalcites was investigated. The charge density of the layer and the distance between the adjacent anions varied with the molar ratio of Al^3+/(Mg^2+ + Al^3+). Anionic potential energy depended on the charge and size of the anions. Calculation results remained consistent with thermal stability and the ion exchange ability reported. This model is able to predict anionic stability of the hydrotalcites.展开更多
The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is ...The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is based on two different steps: a territorial analysis for the evaluation of solar radiation and usable surfaces for photovoltaic or solar thermal plant, and a plant analysis for highlighting those photovoltaic and solar thermal technologies which installation will not generate significant impacts in areas characterized by high environmental and landscaping value. The methodology was successfully applied in two case studies inside two different Italian natural protected areas. The obtained results were provided to local administrations and communities as a useful tool for sustainable energy planning.展开更多
Solar energy is a very abundant renewable energy source during the day. The solar energy received in a given point of the Earth is function of the time, the season and the latitude of the point. It has been proven tha...Solar energy is a very abundant renewable energy source during the day. The solar energy received in a given point of the Earth is function of the time, the season and the latitude of the point. It has been proven that the solar energy received in one day by our planet is thirty times higher than the annual global energy consumption. Africa is one of the sunniest continents of the world. Nowadays, solar energy is attracting particular attention in the implementation of the energy policies. This renewable source is a key solution to world energy problems, especially in the context of global warming. Niger is identified as among the sunniest zones of the World. Knowledge of solar potential is one of the crucial parameters to master for energy applications. In this study, continuous measurements (at intervals of 5 minutes over 24 hours) of solar radiation have been carried out on the site of the National Center of Solar Energy of Niamey. These measurements were taken using the pyranometers, allowed us to collect the values of the daily global sunshine on a horizontal plane and on an inclined plane of the years 2015 and 2016. The treatment and the exploitation of these data allowed us to determine the daily and monthly duration of sunshine, then the impact of the clouds and dust on the solar radiation, to evaluate the solar potential of the site and determine the variations of this solar potential as a function of time. The results showed that the solar potential was very favorable for many solar applications.展开更多
文摘Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.
基金This work was supported by the National Natural Science Foundation of China (No. 40274044).
文摘Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
文摘The electrostatic potential energy model of hydrotalcites was based on the theory of crystallography. The anionic potential energy of MgAl-hydrotalcites, with 20 layers and 2107 anions per layer, was calculated, and the anionic stability of the hydrotalcites was investigated. The charge density of the layer and the distance between the adjacent anions varied with the molar ratio of Al^3+/(Mg^2+ + Al^3+). Anionic potential energy depended on the charge and size of the anions. Calculation results remained consistent with thermal stability and the ion exchange ability reported. This model is able to predict anionic stability of the hydrotalcites.
文摘The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is based on two different steps: a territorial analysis for the evaluation of solar radiation and usable surfaces for photovoltaic or solar thermal plant, and a plant analysis for highlighting those photovoltaic and solar thermal technologies which installation will not generate significant impacts in areas characterized by high environmental and landscaping value. The methodology was successfully applied in two case studies inside two different Italian natural protected areas. The obtained results were provided to local administrations and communities as a useful tool for sustainable energy planning.
文摘Solar energy is a very abundant renewable energy source during the day. The solar energy received in a given point of the Earth is function of the time, the season and the latitude of the point. It has been proven that the solar energy received in one day by our planet is thirty times higher than the annual global energy consumption. Africa is one of the sunniest continents of the world. Nowadays, solar energy is attracting particular attention in the implementation of the energy policies. This renewable source is a key solution to world energy problems, especially in the context of global warming. Niger is identified as among the sunniest zones of the World. Knowledge of solar potential is one of the crucial parameters to master for energy applications. In this study, continuous measurements (at intervals of 5 minutes over 24 hours) of solar radiation have been carried out on the site of the National Center of Solar Energy of Niamey. These measurements were taken using the pyranometers, allowed us to collect the values of the daily global sunshine on a horizontal plane and on an inclined plane of the years 2015 and 2016. The treatment and the exploitation of these data allowed us to determine the daily and monthly duration of sunshine, then the impact of the clouds and dust on the solar radiation, to evaluate the solar potential of the site and determine the variations of this solar potential as a function of time. The results showed that the solar potential was very favorable for many solar applications.