期刊文献+
共找到12,072篇文章
< 1 2 250 >
每页显示 20 50 100
Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk
1
作者 Dong Pan Xu Gui +3 位作者 Jiayin Xu Yuming Shen Haoran Xu Yinghao Ma 《Energy Engineering》 EI 2024年第5期1309-1328,共20页
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,... With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit. 展开更多
关键词 Carbon emission risk power balance risk thermal power retrofit generation expansion planning
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies
2
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power 被引量:6
3
作者 徐晓虹 MA Xionghua +3 位作者 WU Jianfeng CHEN Ling XU Tao ZHANG Mengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期407-412,共6页
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint... In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material. 展开更多
关键词 solar thermal power generation heat transfer tube MULLITE-CORDIERITE composite ceramic
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
4
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
Output power analyses for the thermodynamic cycles of thermal power plants 被引量:2
5
作者 孙晨 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期208-215,共8页
Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to a... Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. 展开更多
关键词 thermal power plants Rankine circle exergy destruction entransy loss
下载PDF
Preparation and Characterization of Andalusite Ceramic Used for Solar Thermal Power Generation 被引量:1
6
作者 吴建锋 CHENG Hao +3 位作者 XU Xiaohong ZHOU Yang HE Dezhi LIU Yi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期422-427,共6页
High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials,... High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460℃C, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g.cm^-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coefficient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system. 展开更多
关键词 andalnsite MULLITE thermal storage ceramics thermal shock resistance solar thermal power generation
下载PDF
A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant 被引量:1
7
作者 Min Wang Li Sheng +1 位作者 Donghua Zhou Maoyin Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期719-727,共9页
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv... With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China. 展开更多
关键词 Abnormality monitoring continuous variables feature weighted mixed naive Bayes model(FWMNBM) two-valued variables thermal power plant
下载PDF
Discharge water temperature assessment of thermal power plantusing remote sensing techniques 被引量:1
8
作者 Priyom Roy Ivaturi N.Rao +1 位作者 Tapas Ranjan Martha K.Vinod Kumar 《Energy Geoscience》 2022年第2期172-181,共10页
Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of th... Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations. 展开更多
关键词 Discharge water thermal power plant Ambient temperature Landsat 8 Seawater pollution
下载PDF
Optimisation of Electrical Distribution System by Using Solar Thermal Powered Systems and Its Impact on Electrical Distribution Feeders
9
作者 Punnaiah Veeraboina G. Yesuratnam 《Energy and Power Engineering》 2016年第4期219-229,共11页
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ... In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings. 展开更多
关键词 Solar thermal power Systems Electrical Distribution Feeder Energy Consumption Automatic power Factor Correction Electrical Heaters
下载PDF
Research on the Prediction of Load Regulation Capacity for Supercritical Thermal Power Unit
10
作者 Yong He Zhuo Huang +3 位作者 Yaohua Tang Weimin Guo Yuanli Cai Haonan Jiang 《Journal of Power and Energy Engineering》 2020年第8期23-36,共14页
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos... Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly. 展开更多
关键词 Supercritical thermal power Unit Subspace Identification Indirect Identification Load Regulation
下载PDF
Modelling of Solar Thermal Power Plant Using Parabolic Trough Collector
11
作者 Jignasha Bhutka Jaymin Gajjar T. Harinarayana 《Journal of Power and Energy Engineering》 2016年第8期9-25,共18页
The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. ... The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. As compared to solar photovoltaic, solar thermal installations are less studied, especially regarding energy estimation and performance analysis. For estimating the potential of CSP plants, it is planned to simulate a power plant. We have marginally modified the design of 1 MW operational power plant installed at Gurgaon using Parabolic Trough Collector (PTC) technology. The results are compared with the expected output of Gurgaon power plant and also 50 MW power plant at Rajasthan. Our results have closely matched with a small deviation of 3.1% and 3.6% for Gurgaon and Rajasthan plants, respectively. Our developed model is also validated with 18 different solar power plants in different parts of the world by slightly modifying the parameters according to the plant capacity without changing major changes to the plant design. Difference between our results and the expected energy generation varied from 0.4% to 13.7% with an average deviation of 6.8%. As our results show less than 10% deviation as compared to the actual generation, an attempt has been made here to estimate the potential for the entire nation. For this modelling has been carried out for every grid station of 0.25° × 0.25° interval in India. Our results show that annual solar thermal power plant of 1 MW<sub>e</sub> capacity potential varies from 900 to 2700 MWh. We have also compared our results with previous studies and discussed. 展开更多
关键词 Parabolic Trough Solar thermal power TRNSYS SIMULATION INDIA
下载PDF
Novel Technology and Products: Fluidized Bed Incineration and Energy Recovery for Waste Disposal——Developed by the Institute for Thermal Power Engineering, Zhejiang University
12
《China's Foreign Trade》 1997年第7期34-35,共2页
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories... The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the 展开更多
关键词 In Novel Technology and Products Zhejiang University Developed by the Institute for thermal power Engineering Fluidized Bed Incineration and Energy Recovery for Waste Disposal
下载PDF
Thermal Power:Focusing on Efficient and Clean Generation
13
作者 Han Wei Journalist of Electrical Equipment Li Jialu 《Electricity》 2009年第3期26-30,共5页
History review Before the foundation of New China,there was no thermal power equipment manufacturing industry in China at all.China imported the manufacturing technology of 6-MW and12-MW thermal power units from the
关键词 CFB IGCC thermal power HIGH
下载PDF
Large Units, Large Plants -Major Thermal Power Sources
14
《Electricity》 1996年第2期7-12,共6页
China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achieveme... China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achievement in technology and economical results during the past eight years from 1987-1995. The total national installed generating capacity increased from 102.897 GW in 1987 to more than 200 GW in March, 1995. 展开更多
关键词 GENE Major thermal power Sources Large Plants Large Units
下载PDF
$80m credit pact to a Pakistan thermal power project signed
15
《Electricity》 1996年第3期39-39,共1页
Two agreements to provide guarantees and insurance for an $80-million export buyers’ credit to a Pakistani thermal power project were signed on August in Beijing. The agreements were reached between the People’s Ins... Two agreements to provide guarantees and insurance for an $80-million export buyers’ credit to a Pakistani thermal power project were signed on August in Beijing. The agreements were reached between the People’s Insurance (Property) Co Ltd (PICC Property), Bank of China and the Harbin Power Engineering Co Ltd. The UCH power project of Pakistan, which will cost $630 million and have a 586 MW capacity, is one of Pakistan’s first batch of non-governmental power projects. It will be built in Pakistan by the General Electric International Operations Co Inc of the United States and the Harbin Power Engineering Co Ltd. The US firm 展开更多
关键词 PICC BANK credit pact to a Pakistan thermal power project signed
下载PDF
Shut down Small Thermal Power Plants
16
《Electricity》 1999年第3期54-54,共1页
关键词 DOWN Shut down Small thermal power Plants
下载PDF
CONSTRUCTION OF GUIZHOU PANXINA THERMAL POWER PLANT PHASE Ⅱ SPEED UP TO PROMOTE THE COURSE "SENDING POWER FROM WEST TO EAST
17
《Electricity》 2000年第3期49-49,共1页
关键词 SENDING power FROM WEST TO EAST CONSTRUCTION OF GUIZHOU PANXINA thermal power PLANT PHASE SPEED UP TO PROMOTE THE COURSE
下载PDF
FGD Franchising Pilot Project of Thermal Power Plants
18
作者 Wang Zhixuan,Pan Li and Zhang Jingyi China Electricity Council Wang Ying 《Electricity》 2009年第4期41-47,共7页
According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plan... According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At the end,it puts forward some suggestions and countermeasures with regard to laws,regulations,taxation policy and electricity pricing policy. 展开更多
关键词 FGD Franchising Pilot Project of thermal power Plants PROJECT
下载PDF
Improvement in Mechanical Design of Chinese Thermal Power Plant
19
《Electricity》 1999年第1期18-21,共4页
关键词 DESIGN Improvement in Mechanical Design of Chinese thermal power Plant
下载PDF
On the Development of China's Thermal Power in the 21st Century while Saving the Energy and Protecting the Environment
20
作者 Zheng Dingyong, Northwest Electric Power Design Institute 《Electricity》 1996年第3期16-18,共3页
In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century... In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century shall be the efficiency and cleaning technology of coal use. Especially important is the structure of power sources and configuration of technology process, and secondly the implementation of energy saving and environmental protection ideology in the various stages of thermal power construction and design work. 展开更多
关键词 De On the Development of China’s thermal power in the 21st Century while Saving the Energy and Protecting the Environment IGCC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部