期刊文献+
共找到1,483篇文章
< 1 2 75 >
每页显示 20 50 100
Research progress on protective coatings against molten nitrate salts for thermal energy storage in concentrating solar power plants
1
作者 HOU Wenjie Maria Elena Navarro Rivero +4 位作者 PAN Jin ZOU Boyang Benjamin Grégoire Anabel Palacios DING Yulong 《Baosteel Technical Research》 CAS 2023年第4期1-16,共16页
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten... Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications. 展开更多
关键词 anticorrosive coating high temperature molten salt concentrated solar power thermal energy storage
下载PDF
Exploration of Construction Organization for Maintenance of Steam Turbine Equipment in Thermal Power Plants
2
作者 Zhu Yang 《Journal of Electronic Research and Application》 2024年第4期148-153,共6页
The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong ... The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong its lifespan and avoid safety hazards,it is necessary to pay attention to strengthening maintenance and construction organization,better implementing effective organizational work,and effectively applying steam turbine equipment to ensure the sustainable development of thermal power plants.This article discusses the concept of equipment maintenance from the perspective of steam turbine equipment in thermal power plants,analyzes the current situation of equipment maintenance,and proposes a specific construction organization to provide a reference for steam turbine equipment maintenance. 展开更多
关键词 thermal power plant Steam turbine equipment Construction organization
下载PDF
High-temperature Thermal Properties and Wear Behavior of Basalt as Heat Storage Material for Concentrated Solar Power Plants 被引量:1
3
作者 LIAO Jun ZHU Xupeng +3 位作者 LI Jianan XUE Shuwen ZOU Changwei ZHANG Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期547-553,共7页
The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the fr... The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment. 展开更多
关键词 thermal energy storage concentrated solar power BASALT wear rate
下载PDF
A power plant for integrated waste energy recovery from liquid air energy storage and liquefied natural gas 被引量:4
4
作者 Tongtong Zhang Xiaohui She Yulong Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期242-257,共16页
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio... Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste. 展开更多
关键词 Waste energy recovery power plant Liquid air energy storage Liquefied natural gas INTEGRATION
下载PDF
Economic Overhaul Mode of Steam Engine Professional Equipment in Thermal Power Plant
5
作者 Rui Wang 《Journal of Electronic Research and Application》 2024年第5期46-51,共6页
To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the ... To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the professional equipment of steam engines.However,the maintenance work of steam engine professional equipment in thermal power plants usually uses high-cost expenditures.Therefore,how to take effective measures to reduce the cost of professional equipment maintenance in thermal power plants has become a problem that needs to be solved before such maintenance can proceed.Among them,through the application of economic maintenance equipment in thermal power plants,the actual production and operation costs can be effectively reduced.Based on this,the author will analyze the application of the model of economic maintenance of steam engine professional equipment in thermal power plants. 展开更多
关键词 thermal power plant Turbine professional equipment maintenance Economic maintenance mode
下载PDF
Battery Energy Storage System and Demand Response Based Optimal Virtual Power Plant Operation
6
作者 Ya-Chin Chang Rung-Fang Chang 《Journal of Applied Mathematics and Physics》 2017年第4期766-773,共8页
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably... With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost. 展开更多
关键词 Battery energy storage System Distributed energy RESOURCE DEMAND Response ITERATIVE Dynamic PROGRAMMING Particle SWARM Optimization Virtual power Plant
下载PDF
Thermal Power Plant with 1 GW Capacity for Meeting Future National Electric Demands
7
作者 Osama A. Marzouk Ahmed A. Arman +2 位作者 Marwan M. Al Saadi Ahmed S. Al-Maqbali Sulaiman S. Al Sharji 《Journal of Power and Energy Engineering》 2022年第8期1-11,共11页
An analysis for a conceptual design of a thermal power plant (with a power capacity of 1 GW) is provided. This power plant can help in meeting the expected increase in the electric demand for Oman’s dominant power sy... An analysis for a conceptual design of a thermal power plant (with a power capacity of 1 GW) is provided. This power plant can help in meeting the expected increase in the electric demand for Oman’s dominant power system (2.4 GW between 2018 and 2025). A necessary fluid mass flow rate of 834.1 kg/s was predicted. The overall energy conversion efficiency (output useful electricity divided by input heat) was estimated to be 34.7%. The needed thermal energy is not restricted to a specific source, and solar heating is an option for supplying the needed heat. The power plant design is based on using a steam-turbine section, which may be composed of a single large steam turbine having a mechanical power output of 1115 MW;or composed of a group of smaller steam turbines. The analysis is based on applying energy balance equations under certain assumptions (such as neglecting changes in potential energy). The thermal analysis was aided by web-based tool for calculating needed properties of the working medium, which is water, at different stages in the power plant. 展开更多
关键词 power Plant power Station ELECTRICITY energy thermal
下载PDF
Test Facility for Low Potential Pumped Storage Power Plants and Hydrokinetic Turbines
8
作者 Dominik Surek 《Journal of Energy and Power Engineering》 2013年第11期2037-2044,共8页
The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electri... The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water. 展开更多
关键词 energy storage pumped storage power plant wind energy photovoltaic.
下载PDF
Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment 被引量:4
9
作者 Jingtian Bi Tong Jiang +1 位作者 Weili Chen Xian Ma 《Energy and Power Engineering》 2013年第4期26-30,共5页
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres... Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given. 展开更多
关键词 power storage Compressed Air energy storage HYDRAULIC EQUIPMENT Optimal Operation ISOthermal PROCESS ADIABATIC PROCESS EQUIPMENT Utilization Efficiency
下载PDF
Present status of pumped hydro storage operations to mitigate renewable energy fluctuations in Japan 被引量:1
10
作者 Shota Ichimura Seiichiro Kimura 《Global Energy Interconnection》 2019年第5期424-429,共6页
This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed ... This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants,such as nuclear power plants,in stable conditions.Therefore,many PHES plants are located midway between nuclear power plants and large demand areas.However,all nuclear power plants had to–at least temporarily–shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011,and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff(FIT)scheme.Therefore,PHES plants are being used to mitigate fluctuations of VRE,especially in areas where renewable energy has been significantly installed.The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted.But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Crossregional Coordination of Transmission Operators(OCCTO),market-based operations have not been conducted enough yet.The market design shall be changed to harmonize VRE installation and PHES plants’operations are necessary to make the transition from the past operating mode of PHES plants across Japan. 展开更多
关键词 PUMPED hydro energy storage PLANT Nuclear power PLANT Variable RENEWABLE energy Solar photovoltaic Marketdesign
下载PDF
Energy and Exergy Analysis of a New Small Concentrating Solar Power Plant
11
作者 Heng-Yi Li Tsair-Fuh Huang +4 位作者 Meng-Chang Tsai Yung-Woou Lee Shing-Lei Yuan Ming-Jui Tsai Chi-Fong Ai 《Energy and Power Engineering》 2013年第4期300-305,共6页
A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework c... A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant. 展开更多
关键词 EXERGY Analysis CONCENTRATING SOLAR power thermal energy storage STIRLING ENGINE
下载PDF
Proposal of a Solar Thermal Power Plant at Low Temperature Using Solar Thermal Collectors
12
作者 Patrick Lindecker 《Energy and Power Engineering》 CAS 2022年第8期343-386,共44页
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa... To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season. 展开更多
关键词 power Plant Solar thermal Solar energy Renewable energy Low Temperature Solar Collectors Electric power Generation Desalinated Water
下载PDF
Performance Analysis of Multi-Energy Hybrid System Based on Molten Salt Energy Storage
13
作者 Xin Xu Lian Zhang 《Energy Engineering》 EI 2021年第6期1905-1920,共16页
This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage med... This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%. 展开更多
关键词 Solar thermal power thermal energy storage storage medium energy cascade utilization
下载PDF
Stability Enhancement of Small-Scale Power Grid with Renewable Power Sources by Variable Speed Diesel Power Plant
14
作者 Rion Takahashi Atsushi Umemura Junji Tamura 《Journal of Power and Energy Engineering》 2020年第3期1-17,共17页
This paper proposes a power control method to improve a stability of a small-scale power grid with renewable energy sources. In an isolated small- scale power grid such as an island, diesel power plant is main power s... This paper proposes a power control method to improve a stability of a small-scale power grid with renewable energy sources. In an isolated small- scale power grid such as an island, diesel power plant is main power source which has an environmental burden and expensive running cost due to high priced fossil fuel. Thus, expanding installation of the renewable energy sources such as a wind power is strongly desirable. Such fluctuating energy sources, however, harm power quality of the small-scale power grid, and in addition, conventional power plant in the small-scale power grid cannot, in general, stabilize the grid system with such fluctuating power sources. In this study, Variable Speed Doubly-Fed Induction Generator (VS-DFIG) is proposed to be in-stalled at a diesel power plant instead of a conventional Fixed Speed Synchronous Generator (FS-SG), because quick control of a power balance in the small-scale power grid can be achieved by using the inertial energy of VS-DFIG. In addition, utilization of a Battery Energy Storage System (BESS) is also considered to assist cooperatively the VS-DFIG control. As a result of the simulation analysis by using the proposed method, it is verified that frequency fluctuations due to renewable energy source can be effectively reduced by quick power control of the VS-DFIG compared to the conventional FS-SG, and further control ability can be obtained by utilizing BESS. Moreover, the transient stability of a small-scale power grid during a grid fault can also be enhanced. 展开更多
关键词 SMALL-SCALE power Grid Variable Speed DOUBLY-FED Induction Generator (VS-DFIG) DIESEL power Plant Wind power Battery energy storage System (BESS)
下载PDF
Carnot Factor of a Vapour Power Cycle with Regenerative Extraction
15
作者 Duparquet Alain 《Journal of Modern Physics》 2017年第11期1795-1808,共14页
The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since t... The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This process is known as regeneration, and the heat exchanger where the heat is transferred from steam is called a regenerator (or a feedwater heater). The profit in the output brought by regenerative rakings is primarily enabled by the lack of exchange of the tapped vapour reheating water with the low-temperature reservoir. The economic optimum is often fixed at seven extractions. One knows the Carnot relation, which is the best possible theoretical yield of a dual-temperature cycle;in a Carnot cycle, one makes the assumption that both compressions and expansions are isentropic. This article studies an ideal theoretical machine comprised of vapour extractions in which each cycle partial of tapped vapour obeys these same compressions and isentropic expansions. 展开更多
关键词 THERMODYNAMIC Carnot FACTOR Rankine CYCLE power Plant energy Efficiency Entropy Second Law Analysis IRREVERSIBILITY REGENERATIVE CYCLE thermal CYCLE
下载PDF
Recent Progress on Thermal Energy Storage for Coal-Fired Power Plant
16
作者 WANG Wei ZHANG Jianyuan +8 位作者 GU Yi LUO Qing ZHOU Guiqing LI Ang LU Guozhong MA Tingshan ZHAO Yuanzhu CHANG Yiming XUE Zhaonan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2138-2150,共13页
With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,bu... With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects. 展开更多
关键词 thermal energy storage coal-fired power station flexible regulation water tank heat storage mol saltheatstorage
原文传递
Low-Carbon Dispatching for Virtual Power Plant with Aggregated Distributed Energy Storage Considering Spatiotemporal Distribution of Cleanness Value
17
作者 Hongchao Gao Tai Jin +3 位作者 Guanxiong Wang Qixin Chen Chongqing Kang Jingkai Zhu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期346-358,共13页
The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleann... The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value. 展开更多
关键词 Distributed energy storage virtual power plant(VPP) spatiotemporal distribution low-carbon dispatching
原文传递
The import contract on the generating equipment of Hanfeng Thermal Power Plant signed in Beijing
18
《Electricity》 1996年第4期50-50,共1页
On November 8, 1996. the import contract signing ceremony on the two 660 MW coal-fired generating units of Hanfeng Thermal Power Plant 1st phase was held in the Great Hall of People, Beijing.
关键词 The import contract on the generating equipment of Hanfeng thermal power Plant signed in Beijing
下载PDF
Modeling and Energy Efficiency Analysis of Thermal Power Plant with High Temperature Thermal Energy Storage(HTTES) 被引量:4
19
作者 ZHANG Hongwei LIANG Wenbin +1 位作者 LIU Junqing WANG Jie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期1025-1035,共11页
This paper presents the recent research on the study of the strategies for the flexible operation of the thermal power plant to meet the requirement of load balance. The study aimed to investigate the feasibility of b... This paper presents the recent research on the study of the strategies for the flexible operation of the thermal power plant to meet the requirement of load balance. The study aimed to investigate the feasibility of bringing the High Temperature Thermal Energy Storage(HTTES) to the thermal power plant steam-water cycle, to identify the suitable HTTES in the cold(hot) section of the reheating pipeline and to test the efficiency of the HTTES integration to increase the flexibility of peak shaving and energy efficiency via thermal power plant with HTTTES modelling and simulation. Thermoflex was adopted to perform the simulation and a 300 MW subcritical coal-fired power plant model was implemented onto the software platform. The simulation results show that it is feasible to extract steam from the steam turbine to charge the HTTES, and to discharge the stored thermal energy back to the power generation process, and to analyse the improved capability of the plant flexible operation with HTTES. Then the study was extended to analyse the effect of thermal energy temperature, the opening of the regulating valve, and the pipeline pressure loss aspects on thermal efficiency of the whole plant. The study is beneficial to achieve more economic operation of the thermal power plant with HTTES integration. It is concluded that the introduction of the HTTES can improve the consumption of wind power, and these ideas and methods for solving the energy consumption of the renewable energy and reducing the peak energy consumption are provided. 展开更多
关键词 thermal power plant peak shaving high temperature thermal energy storage wind power accumulation
原文传递
Design and Operational Strategy Research for Temperature Control Systems of Isothermal Compressed Air Energy Storage Power Plants 被引量:2
20
作者 FU Hao JIANG Tong +1 位作者 CUI Yan LI Bin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第2期204-217,共14页
Energy storage technology is critical for intelligent power grids. It has great significance for the large-scale integration of new energy sources into the power grid and the transition of the energy structure. Based ... Energy storage technology is critical for intelligent power grids. It has great significance for the large-scale integration of new energy sources into the power grid and the transition of the energy structure. Based on the existing technology of isothermal compressed air energy storage, this paper presents a design scheme of isothermal compressed air energy storage power station, which uses liquid to compress air, hydraulic piston to transfer potential energy, hydraulic turbine to generate electricity at constant pressure, and liquid occupancy to store the gas at constant pressure. Then the technical features and control strategies of its internal temperature control subsystem are studied, and the mathematical model is constructed. A hierarchical relay operation is put forward to address the actual construction and operational requirements of compressed air energy storage power plants. Finally, through physical platform experiments and MATLAB simulation, the feasibility of the design is validated. 展开更多
关键词 HIERARCHICAL RELAY operation ISOthermal compression compressed air energy storage power PLANT energy storage
原文传递
上一页 1 2 75 下一页 到第
使用帮助 返回顶部