期刊文献+
共找到913篇文章
< 1 2 46 >
每页显示 20 50 100
Lattice Boltzmann method formulation for simulation of thermal radiation effects on non-Newtonian Al_(2)O_(3) free convection in entropy determination
1
作者 M.NEMATI M.SEFID +1 位作者 A.KARIMIPOUR A.J.CHAMKHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1085-1106,共22页
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen... The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. 展开更多
关键词 thermal performance analysis heat absorption/generation power-law(PL)Al_(2)O_(3)nanofluid magnetohydrodynamics natural convection volumetric radiation inclined cavity
下载PDF
Transient thermal analysis as measurement method for IC package structural integrity 被引量:2
2
作者 Alexander Han Maximilian Schmid +1 位作者 E Liu Gordon Elger 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期47-64,共18页
Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) eff... Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high- power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability investigation of semiconductor packages in accelerated lifetime tests and for inline inspection. This enables automatic data analysis of the transient thermal data required for processing a large amount of data in production and reliability testing. Based on the method, the integrity of LED packages can be tested by inline, outgoing inspection and the lifetime prediction of the products is improved. 展开更多
关键词 transient thermal analysis thermal resistance RELIABILITY light emitting diode
下载PDF
Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers 被引量:1
3
作者 Yun CUI Yafei YIN +4 位作者 Chengjun WANG K. SIM Yuhang LI Cunjiang YU Jizhou SONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期943-952,共10页
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons... Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics. 展开更多
关键词 transient thermo-mechanical analysis SOFT ROBOT thermal-responsive liq- UID crystal elastomer (LCE)
下载PDF
Finite element analysis of three-dimensional laser-induced transient thermal grating in diamond/ZnSe system
4
作者 程营 黄巧建 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4273-4278,共6页
This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical res... This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system. 展开更多
关键词 thermal analysis transient thermal grating diamond/ZnSe finite element method
下载PDF
Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool 被引量:6
5
作者 ZHAO Jun, AI Xing, HUANG Xin-ping (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期61-62,共2页
Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in th... Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and subsequent three-point bending tests of flexural strength diminution. Comparisons were made with results from parallel experiments conducted using a homogeneous Al 2O 3-TiC ceramics. Functionally gradient ceramics exhibited higher retained strength under all thermal shock temperature differences compared to homogeneous ceramics, indicating the higher thermal shock resistance. The experimental results were supported by the calculation of transient thermal stress field. The cutting performance of the Al 2O 3-TiC functionally gradient ceramic tool FG-1 was also investigated in rough turning the cylindrical surface of exhaust valve of diesel engine in comparison with that of a common Al 2O 3-TiC ceramic tool LT55. The results indicated that the tool life of FG-1 increased by 50 percent over that of LT55. Tool life of LT55 was mainly controlled by thermal shock cracking which was accompanied by mechanical shock. While tool life of FG-1 was mainly controlled by mechanical fatigue crack extension rather than thermal shock cracking, revealing the less thermal shock susceptibility of functionally gradient ceramics than that of common ceramics. 展开更多
关键词 functionally gradient materials ceramic tool materials thermal shock resistance transient thermal stress cutting performance
下载PDF
Innovative Design and Additive Manufacturing of Regenerative Cooling Thermal Protection System Based on the Triply Periodic Minimal Surface Porous Structure 被引量:3
6
作者 Xinglong Wang Cheng Wang +3 位作者 Xin Zhou Mingkang Zhang Peiyu Zhang Lei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期495-508,共14页
The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of... The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of hypersonic vehicles.Triply periodic minimal surface(TPMS)is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics.In this study,test pieces were manufactured using Ti6Al4V lightweight material.We designed three types of porous test pieces,and the interior was filled with a TPMS lattice(Gyroid,Primitive,I-WP)with a porosity of 30%.All porous test pieces were manufactured via selective laser melting technology.A combination of experiments and finite element simulations were performed to study the selection of the internal cavity structure of the regenerative cooling thermal protection system.Hence,the relationship between the geometry and mechanical properties of a unit cell is established,and the deformation mechanism of the porous unit cell is clarified.Among the three types of porous test pieces,the weight of the test piece filled with the Gyroid unit cell was reduced by 8.21%,the average tensile strength was reduced by 17.7%compared to the solid test piece,while the average tensile strength of the Primitive and I-WP porous test pieces were decreased by 30.5%and 33.3%,respectively.Compared with the other two types of unit cells,Gyroid exhibited better mechanical conductivity characteristics.Its deformation process was characterised by stretching,shearing,and twisting,while the Primitive and I-WP unit cells underwent tensile deformation and tensile and shear deformation,respectively.The finite element predictions in the study agree well with the experimental results.The results can provide a basis for the design of regenerative cooling thermal protection system. 展开更多
关键词 Triply periodic minimal surface(TPMS) regenerative cooling thermal protection system selective laser melting mechanical properties fracture analysis
下载PDF
Effect of Phase Change Materials on the Thermal Protective Performance of the Multi-layered Fabrics Examined by TPP Tester under Flash Fire 被引量:1
7
作者 赵蒙蒙 李俊 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期150-154,共5页
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o... Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance. 展开更多
关键词 phase change material(PCM) multi-layered fabrics thermal protection performance(TPP) fire fighter protective clothing
下载PDF
Effect of Air Gap under Fabric on Thermal Protective Performance Using an Improved Apparatus 被引量:1
8
作者 李小辉 卢业虎 +2 位作者 周亮 李俊 王云仪 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期595-598,共4页
The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entr... The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entrapped.In this paper,to investigate the effect of air gap width on TPP,a new improved apparatus with two height changeable buttons to hold the thermal sensor was developed to get a series of air gap sizes from 0 mm to 40 mm.The TPP of two types of flame-resistant outer fabrics was measured with TPP test apparatus respectively.Analysis of temperature rise with each air gap width was made to determine the effects of different air gaps on protective performance.It was indicated that air gap size had great effect on TPP of fabrics in the bench top test.An air gap width above 8 mm was suggested for the thermal protective clothing design. 展开更多
关键词 air gap thermal protective performance(TPP) bench top test firefig hter’s protective clothing
下载PDF
Modeling and Simulation for Transient Thermal Analyses Using a Voltage-in-Current Latency Insertion Method
9
作者 Wei Chun Chin Boon Chun New +1 位作者 Nur Syazreen Ahmad Patrick Goh 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第4期383-395,共13页
This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a ... This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs. 展开更多
关键词 Latency insertion method(LIM) numerical simulation thermal analysis transient simulation
下载PDF
A Study on Thermal Performance of Palladium as Material for Passive Heat Transfer Enhancement Devices in Thermal and Electronics Systems
10
作者 M.G.Sobamowo S.A.Ibrahim M.O.Salami 《Semiconductor Science and Information Devices》 2020年第2期15-24,共10页
In this work,the thermal behavior of fin made of palladium material under the influences of thermal radiation and internal heat generation is investigated.The thermal model for the extended surface made of palladium a... In this work,the thermal behavior of fin made of palladium material under the influences of thermal radiation and internal heat generation is investigated.The thermal model for the extended surface made of palladium as the fin material is first developed and solved numerically using finite difference method.The influences of the thermal model parameters on the heat transfer behaviour of the extended surface are investigated.The results show that the rate of heat transfer through the fin and the thermal efficiency of the fin increase as the thermal conductivity of the fin material increases.This shows that fin is more efficient and effective for a larger value of thermal conductivity.However,the thermal conductivity of the fin with palladium material is low and constant at the value of approximately 75 W/mK in a wider temperature range of-100℃and 227℃.Also,it is shown that the thermal efficiencies of potential materials(except for stainless steel and brass)for fins decrease as the fin temperatures increase.This is because the thermal conductivities of most of the materials used for fins decreases as temperature increases.However,keeping other fin properties and the external conditions constant,the thermal efficiency of the palladium is constant as the temperature of the fin increases within the temperature range of-100℃and 227℃.And outside the given range of temperature,the thermal conductivity of the material increases which increases the efficiency of the fin.The study will assist in the selection of proper material for the fin and in the design of passive heat enhancement devices under different applications and conditions. 展开更多
关键词 FINS thermal analysis PALLADIUM thermal performance Heat transfer enhancement
下载PDF
A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method
11
作者 M.G.Sobamowo O.A.Adedibu +1 位作者 O.A.Adeleye A.O.Adesina 《Semiconductor Science and Information Devices》 2020年第1期29-36,共8页
In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the... In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the fin heat dissipating capacity but the internal heat generation decreases the heat enhancement capacity of extended surface.Also,it is established that when the internal heat parameter increases to some certain values,some negative effects are recorded where the fin stores heat rather than dissipating it.This scenario defeats the prime purpose of the cooling fin.Additionally,it is established in the present study that the limiting value of porosity parameter for thermal stability for the passive device increases as internal heat parameter increases.This shows that although the internal heat parameter can help assist higher range and value of thermal stability of the fin,it produces negative effect which greatly defeats the ultimate purpose of the fin.The results in the work will help in fin design for industrial applications where internal heat generation is involved. 展开更多
关键词 thermal analysis Solid and porous fins thermal performance Temperature-dependent internal heat generation Differential transformation method
下载PDF
Modeling Thermal Protective Performance of Multilayer Fabrics for Firefighters
12
作者 崔志英 杨海燕 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期271-274,共4页
This paper is to report a prediction model for thermal protective performance of multilayer fabrics based on Matlab neural network toolbox. Then a back propagation (BP) neural network model is developed to predict the... This paper is to report a prediction model for thermal protective performance of multilayer fabrics based on Matlab neural network toolbox. Then a back propagation (BP) neural network model is developed to predict thermal protective performance of multilayer fabrics for firefighters. The network consists of twelve input nodes, six hidden nodes, and one output node. The inputs are weight, thickness, density of warp and weft, limited oxygen index (LOI), and heat conductivity of each-layer fabric. Thermal protective performance (TPP) rating of multilayer fabrics is the output. In this paper, the data from the experiments are used as learning information for the neural network to develop a reliable prediction model. Finnally the model performance is verified, and the proposed model can be applied to predict the thermal protective performance of multilayer fabrics for firefighters. 展开更多
关键词 消防人员衣服 预言模型 热保护的性能(TPP ) 多层的织物 BP 神经网络
下载PDF
Thermal Simulation of AC Electromagnetic Contactor 被引量:3
13
作者 NIUChun-ping CHENDe-gui ZHANGJing-shu LIXing-wen 《Computer Aided Drafting,Design and Manufacturing》 2005年第1期24-28,共5页
关键词 shading coil transient magnetic circuit AC electromagnetic system thermal analysis 3-D finite element method
下载PDF
Experimental Performance Analysis of a Corrugation Type Solar Air Heater(CTSAH)
14
作者 Aravindh Madhavankutty Ambika Aarjab Ghimire Sreekumar Appukuttan 《Energy Engineering》 EI 2022年第4期1483-1499,共17页
This paper explains the experimental performance evaluation of a Corrugated Type Solar Air Heater(CTSAH)for understanding its performance in a humid tropical climatic condition in Puducherry,India.This helps in unders... This paper explains the experimental performance evaluation of a Corrugated Type Solar Air Heater(CTSAH)for understanding its performance in a humid tropical climatic condition in Puducherry,India.This helps in understanding its effectiveness in using it for drying application of products like seafood,etc.Experiments were conducted at different mass flow rates and their effect on the heat gain,efficiency,friction factor heat transfer,etc.,was analyzed.Experiments were carried out at different mass flow rates,i.e.,M1=0.06 kg/s,M2=0.14 kg/s,M3=0.17 kg/s,M4=0.25 kg/s,M5=0.3 kg/s,and were conducted from 11:00 h to 14:00 h.The air inlet&air temperature is found to be at an average of 40°C whereas the incident solar radiation is at an average of 795 W/m2.Experimental results show that the optimum performance of the CTSAH is in the mass flow rate range of 0.14–0.25(kg/s).Also,the calculated useful heat produced,convective heat transfer coefficients,effective efficiency,optical efficiency provides knowledge on the potential use of the air heater. 展开更多
关键词 Solar air heater performance analysis EFFICIENCY solar thermal
下载PDF
Optmization and Thermal Conduction Modeling for a Hybrid Reinforced Composite Material for Solid Rocket Motor Insulation
15
作者 Ashraf Fathy Ahmed Suong Van Hoa 《材料科学与工程(中英文版)》 2010年第6期13-22,共10页
关键词 混合火箭发动机 复合材料 热传导 固体绝缘 钢筋 建模 动力学分析 预测模型
下载PDF
水分对消防灭火防护服织物系统辐射热防护性能的影响
16
作者 邱浩 刘飞 王云仪 《消防科学与技术》 CAS 北大核心 2024年第3期299-304,共6页
现阶段消防灭火服热防护性能评估中,对水分影响的考虑不足。为研究水分在不同织物层中对其热防护性能的影响差异,在低热辐射暴露下,分别在外层、舒适层、外层与舒适层设置不同含水量水平,分别针对直接热暴露、包含热暴露与蓄热释放全程... 现阶段消防灭火服热防护性能评估中,对水分影响的考虑不足。为研究水分在不同织物层中对其热防护性能的影响差异,在低热辐射暴露下,分别在外层、舒适层、外层与舒适层设置不同含水量水平,分别针对直接热暴露、包含热暴露与蓄热释放全程两种情形进行试验测评。研究发现,无论是直接热暴露还是综合考虑蓄热释放的作用,增加外层织物水分含量有利于提升多层织物整体热防护能力,且随着水分含量的增大而上升;舒适层织物润湿则会削弱多层织物整体热防护能力,提高舒适层的吸湿排汗能力,保持其干燥是保持灭火防护服热防护性能的手段之一。外层与舒适层同时润湿时,二者之间呈现交互影响,未来可进一步深入研究。 展开更多
关键词 水分 多层织物系统 热防护性能 热蓄积 二度烧伤
下载PDF
汽车尾气温差发电系统瞬态回收性能分析
17
作者 吴麟麟 胡迎香 +1 位作者 汪若尘 罗丁 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第3期265-272,共8页
为了预测温差发电(thermoelectric generator, TEG)系统的动态特性,基于COMSOL Multiphy-sics建立了用于求解温差发电系统温度场分布的瞬态计算流体力学(computational fluid dynamics, CFD)模型和用于研究温差发电模块瞬态响应特性的... 为了预测温差发电(thermoelectric generator, TEG)系统的动态特性,基于COMSOL Multiphy-sics建立了用于求解温差发电系统温度场分布的瞬态计算流体力学(computational fluid dynamics, CFD)模型和用于研究温差发电模块瞬态响应特性的分析模型,提出了混合瞬态CFD-分析模型,并经过瞬态试验验证.结果表明:由于热惯性的影响,TEG系统的转化效率会出现一个瞬时的较高值;相较于尾气温度和质量流量的瞬态波动,热电半导体的热端温度和冷端温度会存在时滞;在美国环保局的高速公路燃油经济性测试(highway fuel economy test, HWFET)模式循环工况下,瞬态模型求解得到整个温差发电系统的平均输出功率、平均转化效率分别为35.63 W和3.40%,瞬态模型的输出电压平均误差为6.41%;该模型能够以较高的精度及较短的计算时间预测温差发电系统在瞬态热源激励下的瞬态响应特性. 展开更多
关键词 温差发电系统 尾气余热回收 混合瞬态CFD-分析模型 瞬态响应特性 热惯性
下载PDF
涂层传热性能对母线散热能力影响分析
18
作者 陈德敏 许浩文 +3 位作者 王昭 陆彪 王郭兴 王行银 《电工电能新技术》 CSCD 北大核心 2024年第2期12-19,共8页
为提升电力开关柜散热性能、提高供配电稳定性,本文依据传热学基础理论对电力开关柜传热过程进行分析,采用溶液共混法成功制备了适用于电力开关柜母线散热的涂层材料,并基于电磁-热-流多物理场耦合原理构建了电力开关柜涂层-热分析模型... 为提升电力开关柜散热性能、提高供配电稳定性,本文依据传热学基础理论对电力开关柜传热过程进行分析,采用溶液共混法成功制备了适用于电力开关柜母线散热的涂层材料,并基于电磁-热-流多物理场耦合原理构建了电力开关柜涂层-热分析模型,结合母线负载电流计算理论,从涂层热导率、发射率等方面对涂覆散热涂层前后的电力开关柜传热特性进行分析。结果表明:涂层热导率相比于涂层发射率对母线温升影响较小,母线表面涂覆涂层之后,B相母线表面发射率由0.2增大到0.846时,三相母线最大负载电流与未涂覆相比提升18.75%。 展开更多
关键词 电力开关柜 母线温升 散热涂层材料 涂层-热分析模型 散热性能分析
下载PDF
气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用
19
作者 马亮 俞旭华 +4 位作者 刘文武 李慈 方以群 李俊 徐佳骏 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期181-188,共8页
为提升干式潜水服内胆的隔热性能,并探究气凝胶复合材料在潜水服内胆中的水下应用潜力。选择絮片型、发泡型及非织造布型气凝胶复合材料,采用绗缝工艺技术模拟材料在水下的受压状态,研究其在压缩状态下的隔热性能,然后,制作潜水服内胆,... 为提升干式潜水服内胆的隔热性能,并探究气凝胶复合材料在潜水服内胆中的水下应用潜力。选择絮片型、发泡型及非织造布型气凝胶复合材料,采用绗缝工艺技术模拟材料在水下的受压状态,研究其在压缩状态下的隔热性能,然后,制作潜水服内胆,通过暖体假人实验及真人水下实验测试其隔热性能。结果表明,絮片型气凝胶复合材料的水下适用性优于絮片型新雪丽棉;发泡型及非织造布型气凝胶复合材料的热阻受压强影响小,也较适用于水下环境;在真人实验过程中,潜水员的核心温度始终大于37℃,证明所研制的气凝胶复合材料内胆具有良好的水下隔热效果。研究结果可为受压环境下防护服隔热材料的应用方法提供指导建议。 展开更多
关键词 干式潜水服 气凝胶复合材料 隔热内胆 隔热性能 水下保暖 防寒
下载PDF
聚合物表面空间环境防护涂层热应力分析方法研究进展
20
作者 徐梦芸 张锦麟 +6 位作者 马佳玉 唐登航 许文彬 王亮 谷红宇 章俞之 宋力昕 《中国表面工程》 EI CAS CSCD 北大核心 2024年第2期115-136,共22页
柔性聚合物材料作为航天器表面用关键材料,易受到空间环境的协同损伤,在其表面制备防护涂层是实现长期服役的重要技术。但由于常用防护涂层与基体间的性能差异,涂层易因应力出现开裂和剥落,因此应力分析对于材料的设计和优化非常重要。... 柔性聚合物材料作为航天器表面用关键材料,易受到空间环境的协同损伤,在其表面制备防护涂层是实现长期服役的重要技术。但由于常用防护涂层与基体间的性能差异,涂层易因应力出现开裂和剥落,因此应力分析对于材料的设计和优化非常重要。对于涂层应力的分析方法,主要可以分为基于试验测量以及基于数值仿真的有限元分析方法两类。梳理目前常见的试验测量方法,分析有损法和无损法试验测量的应用,整理归纳基于数值仿真的有限元分析方法的原理以及相关应用,比较不同方法的优缺点,总结其局限性以及应用前景。不同应力测试分析方法在材料的服役寿命和失效形式预测中发挥了重要作用,但传统的机械有损测量方法难对应力情况进行实时监测,近年来发展起来的无损法也存在一定的应用局限性,有限元模拟具有实时、全面的应力测量优点,但是与实际涂层模型具有一定的差距。基于目前试验方法与有限元仿真各自的局限性,提出将有限元仿真与试验表征结合成为进一步指导涂层设计的有效方法,有望有效预测涂层失效机制,优化涂层材料制备工艺,开发具有低应力结构的涂层材料,为聚合物表面用关键涂层材料的轻量化发展和长期可靠服役提供技术支撑。 展开更多
关键词 聚合物材料 空间环境防护涂层 热应力 应力分析方法 有限元模拟
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部