期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Medium-entropy(Me,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)(Me=Y and Ta):Promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking
1
作者 Shuaihang Qiu Huimin Xiang +7 位作者 Fu-Zhi Dai Hailong Wang Muzhang Huang Chunlei Wan Qing Meng Jiangtao Li Xiaohui Wang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第28期144-153,共10页
With continuous enhancement of gas-turbine inlet temperature and rapid increase of radiant heat transfer,thermal barrier coating(TBC)materials with a combination of low thermal conductivity and good high-temperature t... With continuous enhancement of gas-turbine inlet temperature and rapid increase of radiant heat transfer,thermal barrier coating(TBC)materials with a combination of low thermal conductivity and good high-temperature thermal radiation shielding performance play vital roles in ensuring the durability of metallic blades.However,yttria-stabilized zirconia(YSZ),as the state-of-the-art TBC and current industry standard,is unable to meet such demands since it is almost translucent to high-temperature thermal radiation.Besides,poor corrosion resistance of YSZ to molten calcia-magnesia-alumina-silicates(CMAS)also impedes its application in sand,dust,or volcanic ash laden environments.In order to improve the hightemperature thermal radiation shielding performance and CMAS resistance of YSZ and further reduce its thermal conductivity,two medium-entropy(ME)oxide ceramics,ME(Y,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)and ME(Ta,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2),were designed and prepared by pressureless sintering of binary powder compacts in this work.ME(Y,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)presents cubic structure but a trace amount of secondary phase,while ME(Ta,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)displays a combination of tetragonal phase(81.6 wt.%)and cubic phase(18.4 wt.%).Both ME(Y,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)and ME(Ta,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)possess better high-temperature thermal radiation shielding performance than YSZ.Especially,the high-temperature thermal radiation shielding performance of ME(Ta,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)is superior to that of ME(Y,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)due to its narrower band gap and correspondingly higher infrared absorbance(above 0.7)at the waveband of 1 to 5μm.The two ME oxides also display significantly lower thermal conductivity than YSZ and close thermal expansion coefficients(TECs)to YSZ and Ni-based superalloys.In addition,the two ME oxides possess excellent CMAS resistance.After attack by molten CMAS at 1250℃for 4 h,merely~2μm thick penetration layer has been formed and the structure below the penetration layer is still intact.These results demonstrate that ME(Me,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2)(Me=Y and Ta),especially ME(Ta,Ti)_(0.1)(Zr,Hf,Ce)_(0.9)O_(2),are promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking. 展开更多
关键词 Medium-entropy ceramics thermal barrier coatings thermal radiation shielding CMAS resistance Infrared absorbance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部