期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
1
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
The Effects of Thermal Radiation and Viscous Dissipation on the Stagnation Point Flow of a Micropolar Fluid over a Permeable Stretching Sheet in the Presence of Porous Dissipation 被引量:1
2
作者 Muhammad Salman Kausar H.A.M.Al-Sharifi +1 位作者 Abid Hussanan Mustafa Mamat 《Fluid Dynamics & Materials Processing》 EI 2023年第1期61-81,共21页
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit... In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter. 展开更多
关键词 Micropolar fluid viscous dissipation stagnation point stretching sheet porous media thermal radiation
下载PDF
Flow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction,magnetic field and thermal radiation
3
作者 Ubaidullah Yashkun Khairy Zaimi +2 位作者 Suliadi Firdaus Sufahani Mohamed REid Mohammad Ferdows 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第3期373-391,共19页
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi... This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it. 展开更多
关键词 stagnation point flow NANOFLUID porous medium SUCTION MAGNETOHYDRODYNAMIC thermal radiation
下载PDF
Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate:An Analytical Strategy
4
作者 T.Aghalya R.Tamizharasi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期431-460,共30页
In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was d... In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was driven by the combined effects of the magnetic field,heat radiation,heat source/sink and chemical reaction.Copper oxide(CuO)and titanium oxide(TiO2)are acknowledged as nanoparticle materials.The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions.Graphical representations are provided to analyze how changes in physical parameters,such as the magnetic field,heat radiation,heat source/sink and chemical reaction,affect the velocity,temperature and concentration profiles.The computed values of skin friction,heat and mass transfer rates at the surface were tabulated for various sets of input parameters.It is perceived that there is a drop in temperature due to the rise in the heat source/sink and the Prandtl number.It should be noted that a boost in the thermal radiation parameter prompts an increase in temperature.An increase in the Prandtl number,heat source/sink parameter,time and a decrease in the thermal radiation parameter result in an increase in theNusselt number.The computed values of the skin friction,heat andmass transfer rates at the surface were tabulated for various values of the flow parameters.The present results were compared with those of previously published studies andwere found to be in excellent agreement.This research has practical applications in areas such as drug delivery,thermal medicine and cancer treatment. 展开更多
关键词 thermal radiation radiative flux NANOFLUID copper oxide titanium oxide accelerated plate
下载PDF
Insight into the dynamics of non-Newtonian Carreau fluid when viscous dissipation,entropy generation,convective heating and diffusion are significant
5
作者 ZHOU Shuang-shuang Muhammad Ijaz Khan +1 位作者 Sami Ullah Khan Sumaira Qayyum 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期34-46,共13页
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m... The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter. 展开更多
关键词 heat generation surface reaction CNTs based nano uid stretching/shrinking sheet thermal radiation
下载PDF
Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder
6
作者 Siti Nur Ainsyah Ghani Noor Fadiya Mohd Noor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1017-1037,共21页
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef... Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids. 展开更多
关键词 Hybrid nanofluid sutterby fluid tiwari-das model thermal radiation GRAPHENE graphene oxides graphene nanoplatelets
下载PDF
Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures
7
作者 Qiang Liu Wei Xu +7 位作者 Xiaoxi Li Tongyao Zhang Chengbing Qin Fang Luo Zhihong Zhu Shiqiao Qin Mengjian Zhu Kostya S Novoselov 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期328-338,共11页
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g... Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators. 展开更多
关键词 suspended graphene ultrafast light emitter van der Waals heterostructures thermal radiation electron–phonon interaction
下载PDF
Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation,energy omission
8
作者 Saleem Nasir Sekson Sirisubtawee +1 位作者 Pongpol Juntharee Taza Gul 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期193-202,共10页
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ... Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement. 展开更多
关键词 hybrid nanofluid(SWCNT+MWCNT/H_(2)O) velocity slip conditions nonlinear thermal radiation exponential stretching/shrinking sheet inclined magnetohydrodynamic(MHD)stagnation flow
下载PDF
The GBR Hypothesis Revisited
9
作者 Lewis Nash 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期800-809,共10页
The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation ar... The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation are only partially developed and furthermore, suffer from an unfortunate misstep regarding Hawking radiation and the hypothetical gravitational black-body temperature of a parcel or distribution of energy;this paper aims to fill in some of the theoretical gaps in the derivation of the Planck radiation formula for gravity (or non-Euclidean space-time), and there by provide a more complete and transparent quantum theory of thermal gravitational radiation. 展开更多
关键词 Gravitational Black Body GRAVITONS thermal Gravitational Radiation Spiral Galaxy Rotation Curves
下载PDF
Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation 被引量:7
10
作者 Swati Mukhopadhyay 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期279-283,共5页
An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, ... An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions. 展开更多
关键词 moving fluid prescribed surface temperature SUCTION thermal radiation
下载PDF
A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization 被引量:5
11
作者 周兵 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期481-488,共8页
In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the ... In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one. 展开更多
关键词 thermal radiation entransy flow entropy generation OPTIMIZATION
下载PDF
Differential transformation method for studying flow and heat transfer due to stretching sheet embedded in porous medium with variable thickness, variable thermal conductivity,and thermal radiation 被引量:4
12
作者 M.M.KHADER A.M.MEGAHED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第11期1387-1400,共14页
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ... This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering. 展开更多
关键词 Newtonian fluid stretching sheet differential transformation method(DTM) thermal radiation variable thermal conductivity variable thickness
下载PDF
Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces 被引量:3
13
作者 Tun Cao Meng Lian +3 位作者 Kuan Liu Xianchao Lou Yaoming Guo Dongming Guo 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期133-141,共9页
Efficient thermal radiation in the mid-infrared(M-IR)region is of supreme importance for many applications including thermal imaging and sensing,thermal infrared light sources,infrared spectroscopy,emissivity coatings... Efficient thermal radiation in the mid-infrared(M-IR)region is of supreme importance for many applications including thermal imaging and sensing,thermal infrared light sources,infrared spectroscopy,emissivity coatings,and camouflage.The ability to control light makes metasurfaces an attractive platform for infrared applications.Recently,different metamaterials have been proposed to achieve high thermal radiation.To date,broadening the radiation bandwidth of a metasurface emitter(meta-emitter)has become a key goal to enable extensive applications.We experimentally demonstrate a broadband M-IR thermal emitter using stacked nanocavity metasurface consisting of two pairs of circular-shaped dielectric(Si;N;)–metal(Au)stacks.A high thermal radiation can be obtained by engineering the geometry of nanocavity metasurfaces.Such a meta-emitter provides wideband and broad angular absorptance of both p-and s-polarized light,offering a wideband thermal radiation with an average emissivity of more than 80%in the M-IR atmospheric window of 8–14μm.The experimental illustration together with the theoretical framework establishes a basis for designing broadband thermal emitters,which,as anticipated,will initiate a promising avenue to M-IR sources. 展开更多
关键词 MID-INFRARED WIDEBAND perfect thermal radiation surface plasmon resonance metasurface NANOCAVITY
下载PDF
MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation 被引量:2
14
作者 Swati Mukhopadhyay Iswar Chandra Moindal Tasawar Hayat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期306-314,共9页
This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid beh... This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises. 展开更多
关键词 exponential stretching suction/blowing prescribed heat flux thermal radiation
下载PDF
Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation 被引量:2
15
作者 T. HAYAT S. A. SHEHZAD A. ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期823-832,共10页
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo... This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other. 展开更多
关键词 three-dimensional flow variable thermal conductivity thermal radiation Jeffrey fluid
下载PDF
Numerical Study of High-Temperature Nonequilibrium Flow around Reentry Vehicle Coupled with Thermal Radiation 被引量:2
16
作者 Jingying Wang Fangzhou Han +1 位作者 Li Lei Chunhian Lee 《Fluid Dynamics & Materials Processing》 EI 2020年第3期601-613,共13页
Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10... Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium,as well as considerable radiative heat transfer.In general,high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models.In this paper,the equations governing hypersonic nonequilibrium flow,based on a three-temperature model combined with a thermal radiation solving approach,are used to investigate the radiation effects in the reentry shock layer.An axisymmetric spherical case shows that coupling the flow-field simulation with radiation has a scarce influence on the convective heating prediction,but has some impact on the radiative heating calculation.In particular,for the Apollo capsule reentry,both the absorption coefficient and incident radiation are remarkable inside the shock layer.The radiative heating maximum reaches nearly 38%of that of the convective heating making a considerable contribution to the total aerodynamic heating.These results indicate that in the hypersonic regime,in order to account for the total heating,it is necessary to simulate the high-temperature thermochemical nonequilibrium flows coupled with thermal radiation. 展开更多
关键词 REENTRY NONEQUILIBRIUM aerodynamic heating thermal radiation
下载PDF
Investigation on the thermal radiation properties of antimony doped tin oxide particles 被引量:1
17
作者 傅成武 张拴勤 陈明清 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期1107-1112,共6页
This paper reports the preparation of antimony doped tin oxide crystalline powders by chemical coprecipitation method. The influence of sintering temperature and the sintering retention time on the thermal infrared em... This paper reports the preparation of antimony doped tin oxide crystalline powders by chemical coprecipitation method. The influence of sintering temperature and the sintering retention time on the thermal infrared emissivity is analysed. The thermal infrared reflectivity is measured and the optimum doping concentration is proposed. 展开更多
关键词 antimony-doped tin sintered temperature thermal radiation
下载PDF
Effects of thermal radiation on MHD viscous fluid flow and heat transfer over nonlinear shrinking porous sheet 被引量:1
18
作者 G.C.SHIT R.HALDAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期677-688,共12页
This paper investigates the effects of thermal radiation on the magnetohy- drodynamic (MHD) flow and heat transfer over a nonlinear shrinking porous sheet. The surface velocity of the shrinking sheet and the transve... This paper investigates the effects of thermal radiation on the magnetohy- drodynamic (MHD) flow and heat transfer over a nonlinear shrinking porous sheet. The surface velocity of the shrinking sheet and the transverse magnetic field are assumed to vary as a power function of the distance from the origin. The temperature dependent viscosity and the thermal conductivity are also assumed to vary as an inverse function and a linear function of the temperature, respectively. A generalized similarity transfor- mation is used to reduce the governing partial differential equations to their nonlinear coupled ordinary differential equations, and is solved numerically by using a finite difference scheme. The numerical results concern with the velocity and temperature profiles as well as the local skin-friction coefficient and the rate of the heat transfer at the porous sheet for different values of several physical parameters of interest. 展开更多
关键词 thermal radiation shrinking sheet variable viscosity variable thermalconductivity
下载PDF
Entropy analysis in electrical magnetohydrodynamic(MHD) flow of nanofluid with effects of thermal radiation,viscous dissipation,and chemical reaction 被引量:5
19
作者 Yahaya Shagaiya Daniel Zainal Abdul Aziz +1 位作者 Zuhaila Ismail Faisal Salah 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期235-242,共8页
The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, vis... The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations.The resultant system of equations is then solved numerically using implicit finite difference method.The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. 展开更多
关键词 Entropy generation MHD nanofluid thermal radiation Bejan number Chemical reaction Viscous dissipation
下载PDF
Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation 被引量:1
20
作者 T.HAYAT S.ASAD A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第6期717-728,共12页
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effe... The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface. 展开更多
关键词 Casson fluid thermal radiation variable thermal conductivity inclined stretching cylinder
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部