Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructur...Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructures of Au80Sn20 solder were then investigated to understand the reason for the difference in thermal resistance.It was found that the microstructure with a higher content of Au-rich phase in the center of the solder and a lower content of(Au,Ni)Sn phase at the interface of the solder/heat sink resulted in lower thermal resistance.This is attributed to the lower thermal resistance of Au-rich phase and higher thermal resistance of(Au,Ni)Sn phase.展开更多
Using thermal models to describe the heat dissipation process of FCBGA is a significant topic in the field of packaging.However,the thermal resistance model considering the structure of each part of the chip is still ...Using thermal models to describe the heat dissipation process of FCBGA is a significant topic in the field of packaging.However,the thermal resistance model considering the structure of each part of the chip is still ambiguous and rare,but it is quite desirable in engineering.In this work,we propose a detailed thermal resistance network model,and describe it by using thermal conduction resistance and thermal spreading resistance.For a striking FCBGA case,we calculated the thermal resistance of each part of the structure according to the temperature field simulated by COMSOL.The thermal resistance network can be used to predict the temperatures in the chip under different conditions.For example,when the power changes by 40%,the relative error of junction temperature prediction is only 0.24%.The function of the detailed thermal resistance network in evaluating the optimization space and determining the optimization direction is clarified.This work illustrates a potential thermal resistance analysis method for electronic devices such as FCBGA.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0401803,2017YFE0131500,2017YFB0405000)National Natural Science Foundation of China(Grant Nos.61834008,61574160,61804164,and 61704184)+1 种基金Natural Science Foundation of Jiangsu province(BK20180254)China Postdoctoral Science Foundation(2018M630619)。
文摘Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructures of Au80Sn20 solder were then investigated to understand the reason for the difference in thermal resistance.It was found that the microstructure with a higher content of Au-rich phase in the center of the solder and a lower content of(Au,Ni)Sn phase at the interface of the solder/heat sink resulted in lower thermal resistance.This is attributed to the lower thermal resistance of Au-rich phase and higher thermal resistance of(Au,Ni)Sn phase.
基金supported by the National Natural Science Foundation of China (NSFC) (Grants.52176078, and 51827807)the Research Foundation of Zhongxing Telecom Equipment Corporation (Analysis and optimization of internal thermal resistance of FCBGA chip)the Tsinghua University Initiative Scientific Research Program。
文摘Using thermal models to describe the heat dissipation process of FCBGA is a significant topic in the field of packaging.However,the thermal resistance model considering the structure of each part of the chip is still ambiguous and rare,but it is quite desirable in engineering.In this work,we propose a detailed thermal resistance network model,and describe it by using thermal conduction resistance and thermal spreading resistance.For a striking FCBGA case,we calculated the thermal resistance of each part of the structure according to the temperature field simulated by COMSOL.The thermal resistance network can be used to predict the temperatures in the chip under different conditions.For example,when the power changes by 40%,the relative error of junction temperature prediction is only 0.24%.The function of the detailed thermal resistance network in evaluating the optimization space and determining the optimization direction is clarified.This work illustrates a potential thermal resistance analysis method for electronic devices such as FCBGA.
基金the financial support provided by the National Natural Science Foundation of China(No.52274369)the China Postdoctoral Science Foundation(No.2018M632986)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2019JJ50766)the Postdoctoral Science Foundation of Central South University,Chinathe Science and Technology Program of Hunan,China(No.2020GK2044)。