Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Cr...Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Crystallization pressure calculation from basalts with 5.0wt%〈MgO〈8.0wt % shows that magma crystallization pressures beneath near-EPR seamounts are positively and negatively correlated with Nas and Fes, respectively. However, these correlations are indistinct in axial lavas, which can be explained by chemical homogenization induced by extensive mixing processes. In each segment divided by major transforms and over-lapping spreading centers (OSCs), near-EPR seamount lavas have higher magma crystallization pressures, higher Fes and lower Nas than the EPR lavas, which indicate cooler lithosphere, lower degrees and shallower melting depths beneath near-EPR seamounts than the EPR. The correlations between magma crystallization pressures and melting conditions beneath near-EPR seamounts imply that the source thermal state controls the melting degree and melt flux, and then melting process controls the shallow lithosphere temperature and magma crystallization depth (pressure). The cooler mantle sources beneath near-EPR seamounts produce a lower degree of melting and a less robust magma supply, which results in a deep thermal equilibrium level and high magma crystallization pressure. The magma crystallization pressure decreases significantly as spreading rate of the EPR increases from ~80 mm/year in the north (16~N) to ~160 mm/year in the south (19~S), while this trend is unobvious in near-EPR seamounts. This suggests that the magma supply controlled by spreading rate dominates the ridge crust temperature and magma crystallization depth, while the near-EPR seamount magma supply is not dominated by the axial spreading rate. Because most seamounts form and gain most of their volume within a narrow zone of 5-15 km from ridge axis, they provide good constraint on magma supply and thermal structure beneath the EPR. High magma crystallization pressures in seamounts indicate dramatic temperature decrease from the EPR. The crystallization pressures of seamount lavas are well correlated with mantle melting parameters but in a blurry relationship with axial spreading rate. Despite the adjacency of the EPR and nearby seamounts, the thermal structure beneath the near-EPR seamounts are controlled by their own magma supply and conductive cooling, chemically and thermally unaffected by magmatism beneath the ridge axis.展开更多
A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained...A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.展开更多
A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force p...A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage.展开更多
According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of ...According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained.展开更多
针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建...针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建立了变压器热路模型,以计算绕组热点与顶部油温度;其次,采用粒子群优化(particle swarm optimization,PSO)算法拟合热路模型参数,并基于2台不同型号变压器的运行数据,对热路模型的计算精度与拟合参数适用性进行有效性验证;最后,参考GB/T1094.7负载导则给出的温升限值,基于温升特性提出了负荷能力评估模型。分析结果表明,该研究所提热路模型计算热点温度的误差不大于2.35℃,在工程允许范围内;正常周期性负荷下当环境温度低于1℃时,关闭1组子散热器后仍满足温升约束。展开更多
A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop p...A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.展开更多
Thermal convection in the Antarctic Ice Sheet was proposed in 1970. Demonstrating its existence proved to be elusive. In 2009, tributaries to ice streams were postulated as the surface expression of underlying thermal...Thermal convection in the Antarctic Ice Sheet was proposed in 1970. Demonstrating its existence proved to be elusive. In 2009, tributaries to ice streams were postulated as the surface expression of underlying thermal convection rolls aligned in directions of advective ice flow. Two definitive tests of this hypothesis are now possible, using highly accurate ice elevations and velocities provided by the European, Japanese, and Canadian Space Agencies that allow icestream tributaries and their velocities to be mapped. These tests are 1) measuring lowering of tributary surfaces to see if lowering is due only to advective ice thinning, or also requires lowering en masse in the broad descending part of convective flow, and 2) measuring transverse surface ice velocities to see if ice entering tributaries from the sides increases while crossing lateral shear zones, as would be required if this flow is augmented by convective flow ascending in the narrow side shear zones and diverted into tributaries by advective ice flow. If (1) and (2) are applied to tributaries converging on Byrd Glacier, the same measurements can be conducted when tributaries pack together to become “flow stripes” down Byrd Glacier and onto the Ross Ice Shelf to see if (2) is reduced when lateral advection stops. This could determine if thermal convection remains active or shuts down as ice thins. Thermal convection in the Antarctic Ice Sheet would raise three questions. Can it cause the ice sheet to self-destruct as convective flow turns on and off? Does it render invalid climate records extracted at depth from ice cores? Can the ice sheet be studied as a miniature mantle analogous in some respects to Earth’s mantle?展开更多
基金supported by the Pilot Project of Knowledge Innovation Program,Chinese Academy of Sciences(Grant NoKZCX2-EW-QN205)the National Natural Science Foundation of China(No41176043)the Program of Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences(Grant NoMGE2011KG05)
文摘Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Crystallization pressure calculation from basalts with 5.0wt%〈MgO〈8.0wt % shows that magma crystallization pressures beneath near-EPR seamounts are positively and negatively correlated with Nas and Fes, respectively. However, these correlations are indistinct in axial lavas, which can be explained by chemical homogenization induced by extensive mixing processes. In each segment divided by major transforms and over-lapping spreading centers (OSCs), near-EPR seamount lavas have higher magma crystallization pressures, higher Fes and lower Nas than the EPR lavas, which indicate cooler lithosphere, lower degrees and shallower melting depths beneath near-EPR seamounts than the EPR. The correlations between magma crystallization pressures and melting conditions beneath near-EPR seamounts imply that the source thermal state controls the melting degree and melt flux, and then melting process controls the shallow lithosphere temperature and magma crystallization depth (pressure). The cooler mantle sources beneath near-EPR seamounts produce a lower degree of melting and a less robust magma supply, which results in a deep thermal equilibrium level and high magma crystallization pressure. The magma crystallization pressure decreases significantly as spreading rate of the EPR increases from ~80 mm/year in the north (16~N) to ~160 mm/year in the south (19~S), while this trend is unobvious in near-EPR seamounts. This suggests that the magma supply controlled by spreading rate dominates the ridge crust temperature and magma crystallization depth, while the near-EPR seamount magma supply is not dominated by the axial spreading rate. Because most seamounts form and gain most of their volume within a narrow zone of 5-15 km from ridge axis, they provide good constraint on magma supply and thermal structure beneath the EPR. High magma crystallization pressures in seamounts indicate dramatic temperature decrease from the EPR. The crystallization pressures of seamount lavas are well correlated with mantle melting parameters but in a blurry relationship with axial spreading rate. Despite the adjacency of the EPR and nearby seamounts, the thermal structure beneath the near-EPR seamounts are controlled by their own magma supply and conductive cooling, chemically and thermally unaffected by magmatism beneath the ridge axis.
基金Supported by the Science and Technology Foundation of Shaanxi Key L aboratory of Physico- Inorganic Chemistry(No.2 9- 3,2 0 0 1) and the Science and Technology Foundation of Propellant and Explosive Combustion of China(No.5 14 5 5 0 10 1)
文摘A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.
基金This project is supported by National Natural Science Foundation of China (No. 50375129)Foundation for Author of National Excellent Doctoral Dis-sertation of China (FANEDD) (No. 200248)Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0452).
文摘A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage.
基金supported by National 973 Project China(2013CB733305,2013CB733301)National Natural Science Foundation of China(41174011,41429401,41210006,41128003,41021061)
文摘According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained.
基金Supported by Central Universities Fundamental Research Projects Foundation(11QG22)State Key Laboratory of Automobile Noise Vibration and Safety Projects Foundation(NVHSKL-201105)
文摘A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.
文摘Thermal convection in the Antarctic Ice Sheet was proposed in 1970. Demonstrating its existence proved to be elusive. In 2009, tributaries to ice streams were postulated as the surface expression of underlying thermal convection rolls aligned in directions of advective ice flow. Two definitive tests of this hypothesis are now possible, using highly accurate ice elevations and velocities provided by the European, Japanese, and Canadian Space Agencies that allow icestream tributaries and their velocities to be mapped. These tests are 1) measuring lowering of tributary surfaces to see if lowering is due only to advective ice thinning, or also requires lowering en masse in the broad descending part of convective flow, and 2) measuring transverse surface ice velocities to see if ice entering tributaries from the sides increases while crossing lateral shear zones, as would be required if this flow is augmented by convective flow ascending in the narrow side shear zones and diverted into tributaries by advective ice flow. If (1) and (2) are applied to tributaries converging on Byrd Glacier, the same measurements can be conducted when tributaries pack together to become “flow stripes” down Byrd Glacier and onto the Ross Ice Shelf to see if (2) is reduced when lateral advection stops. This could determine if thermal convection remains active or shuts down as ice thins. Thermal convection in the Antarctic Ice Sheet would raise three questions. Can it cause the ice sheet to self-destruct as convective flow turns on and off? Does it render invalid climate records extracted at depth from ice cores? Can the ice sheet be studied as a miniature mantle analogous in some respects to Earth’s mantle?