NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(...NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.展开更多
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up...The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.展开更多
In this study, two thermal barrier coatings based on YSZ were produced by using a commercially available agglomerated and sintered powder and a special spray powder prepared by high energy ball milling. Both thermal b...In this study, two thermal barrier coatings based on YSZ were produced by using a commercially available agglomerated and sintered powder and a special spray powder prepared by high energy ball milling. Both thermal barrier coatings exhibited similar overall porosities, but significantly different microstructures. Application of the special spray powder prepared by high energy ball milling led to a microstructure with numerous inclusions of semi-molten agglomerates, which introduced a plethora of clusters of fine pores into the coating and several more microstructural defects. This microstructure resulted in a significantly better thermal shock behavior compared to the conventional thermal barrier coating. The heat treatment of both thermal barrier coatings atθ=1150℃for t=100 h led to a sintering of both coatings. The results were reduced overall porosity and significantly increased fracture toughness. A correlation between the fracture toughness of both coatings after the heat treatment and the thermal shock life time could not be identified.展开更多
Al/Ni-ZrO2 gradient thennal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pore...Al/Ni-ZrO2 gradient thennal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.展开更多
The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst...The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.展开更多
Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic...Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic-layer(DCL)Gd_(2)Zr_(2)O_(7)/YSZ TBCs with quasicolumnar structure were successfully fabricated by plasma spray-physical vapor deposition(PS-PVD).Tensile and water-quenching tests were applied to evaluate TBCs performances.The results show that adhesion strength of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs is36.5 MPa and 15.4 MPa,respectively.The delamination of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs in the tensile test takes place at the middle and bottom of Gd_(2)Zr_(2)O_(7)layer,respectively,due to relatively lower fracture toughness of Gd_(2)Zr_(2)O_(7)layer.After 40 cycles of water-quenching test,DCL Gd_(2)Zr_(2)O_(7)/YSZ TBC surface keeps relatively intact,while SCL Gd_(2)Zr_(2)O_(7)TBC surface shows 20%visible destroyed regions,which demonstrates that DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs have a better thermal shock resistance than SCL Gd_(2)Zr_(2)O_(7)TBCs.The cracks in the SCL system propagate near thermally grown oxide(TGO)due to thermal mismatch and TGO growing stress,while cracks in the DCL system propagate in the Gd_(2)Zr_(2)O_(7)layer due to its relatively lower fracture toughness.展开更多
Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3...Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3 self-healing agent and Ceria and Yttria-Stabilized Zirconia(CYSZ)on the plasma-sprayed 7YSZ TBCs was carried out by a pulsed Nd:YAG laser.The effect of TiAl3 content on the microstructure,phase composition,and thermal shock behaviors of the bionic self-healing TBCs were investigated.Results indicated that the bionic self-healing TBCs had better thermal shock resistance than that of the as-sprayed TBCs.The thermal shock resistance increased first and then decreased with increasing TiAl3 fraction.The thermal shock resistance of the bionic self-healing TBCs with 15%TiAl3 is triple that of the as-sprayed TBCs.On one hand,the columnar crystals and vertical cracks could improve strain compatibility of TBCs during the thermal shock process;on the other hand,the TiAl3 as a self-healing agent reacted with oxygen in air at high temperature to seal the microcracks,thereby delaying the crack connection.展开更多
基金Project(1343-77212) supported by the Innovation Program for Graduate Students of Central South University, China
文摘NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.
文摘The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.
基金the German Science Foundation (DFG) for financially supporting the research work within the scope of the DFG projects ZH205/2-1 and BO1979/32-2
文摘In this study, two thermal barrier coatings based on YSZ were produced by using a commercially available agglomerated and sintered powder and a special spray powder prepared by high energy ball milling. Both thermal barrier coatings exhibited similar overall porosities, but significantly different microstructures. Application of the special spray powder prepared by high energy ball milling led to a microstructure with numerous inclusions of semi-molten agglomerates, which introduced a plethora of clusters of fine pores into the coating and several more microstructural defects. This microstructure resulted in a significantly better thermal shock behavior compared to the conventional thermal barrier coating. The heat treatment of both thermal barrier coatings atθ=1150℃for t=100 h led to a sintering of both coatings. The results were reduced overall porosity and significantly increased fracture toughness. A correlation between the fracture toughness of both coatings after the heat treatment and the thermal shock life time could not be identified.
文摘Al/Ni-ZrO2 gradient thennal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.
文摘The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB0306100)the National Natural Science Foundation of China(No.51771059)+2 种基金the Natural Science Foundation of Hunan Province(No.2018JJ2524)the International Scientific Technological Cooperation Projects of China(Nos.2015DFR50580 and 2013DFA31440)the Science and Technology Planning Project of Guangdong Province(No.2017A070701027)。
文摘Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic-layer(DCL)Gd_(2)Zr_(2)O_(7)/YSZ TBCs with quasicolumnar structure were successfully fabricated by plasma spray-physical vapor deposition(PS-PVD).Tensile and water-quenching tests were applied to evaluate TBCs performances.The results show that adhesion strength of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs is36.5 MPa and 15.4 MPa,respectively.The delamination of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs in the tensile test takes place at the middle and bottom of Gd_(2)Zr_(2)O_(7)layer,respectively,due to relatively lower fracture toughness of Gd_(2)Zr_(2)O_(7)layer.After 40 cycles of water-quenching test,DCL Gd_(2)Zr_(2)O_(7)/YSZ TBC surface keeps relatively intact,while SCL Gd_(2)Zr_(2)O_(7)TBC surface shows 20%visible destroyed regions,which demonstrates that DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs have a better thermal shock resistance than SCL Gd_(2)Zr_(2)O_(7)TBCs.The cracks in the SCL system propagate near thermally grown oxide(TGO)due to thermal mismatch and TGO growing stress,while cracks in the DCL system propagate in the Gd_(2)Zr_(2)O_(7)layer due to its relatively lower fracture toughness.
基金supported by National Natural Science Foundation of China(Grant No.52105311)Natural Science Foundation of Zhejiang Province(Grant No.LQ21E010002)Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-A2020009).
文摘Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3 self-healing agent and Ceria and Yttria-Stabilized Zirconia(CYSZ)on the plasma-sprayed 7YSZ TBCs was carried out by a pulsed Nd:YAG laser.The effect of TiAl3 content on the microstructure,phase composition,and thermal shock behaviors of the bionic self-healing TBCs were investigated.Results indicated that the bionic self-healing TBCs had better thermal shock resistance than that of the as-sprayed TBCs.The thermal shock resistance increased first and then decreased with increasing TiAl3 fraction.The thermal shock resistance of the bionic self-healing TBCs with 15%TiAl3 is triple that of the as-sprayed TBCs.On one hand,the columnar crystals and vertical cracks could improve strain compatibility of TBCs during the thermal shock process;on the other hand,the TiAl3 as a self-healing agent reacted with oxygen in air at high temperature to seal the microcracks,thereby delaying the crack connection.