期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage
1
作者 吴建锋 章真宇 +3 位作者 XU Xiaohong MA Sitong LI Peixian SHI Xingxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期743-752,共10页
Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testin... Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testing techniques.The experimental results indicate that sample A3(bauxite/kaolin ratio of 5:5)sintered at 1620℃has the optimum comprehensive properties,with bulk density of 2.83 g·cm^(-3)and bending strength of 155.44 MPa.After 30 thermal shocks(1000℃-room temperature,air cooling),the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%,the corresponding thermal conductivity and specific heat capacity are 3.54 W·(m·K)^(-1)and 1.39 kJ·(kg·K)^(-1)at 800℃,and the thermal storage density is 1096 kJ·kg^(-1)(25-800 mullite ceramics;sintering properties;high-temperature thermal storage;thermal shock resistance).Mullite forms a dense and continuous interlaced network microstructure,which endows the samples high thermal storage density and high bending strength,but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content,which reduces the properties of the samples. 展开更多
关键词 mullite ceramics sintering properties high-temperature thermal storage thermal shock resistance
下载PDF
Thermal Shock Resistance and Erosion Resistance of TiB_2 Multiphase Ceramic Composites
2
作者 何平 王为民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期117-120,共4页
The thermal shock resistance and anti- aluminum erosion of TiB2 - BN multiphase ceramics composites were studied. The experimental results show that the TiB2-BN multiphase ceramic possesses a good thermal shock resist... The thermal shock resistance and anti- aluminum erosion of TiB2 - BN multiphase ceramics composites were studied. The experimental results show that the TiB2-BN multiphase ceramic possesses a good thermal shock resistance at high temperatures ( 1000, 1200, 1400, 1500 ℃ ), with the increasing in thermal shocking temperature, the electro-conductivity of TiB2-BN ceramics increases. The metal aluminum has a great influence on the properties of TiB2 - BN ceramics and the main reason is that the aluminum reacts seriously with BN. It is suggested that the content of BN should be reduced to the greatest extent. 展开更多
关键词 thermal shocking resistance erosion resistance MICROSTRUCTURE MECHANISM
下载PDF
Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property 被引量:7
3
作者 JIANG Zhaohua ZENG Xiaobin YAO Zhongping 《Rare Metals》 SCIE EI CAS CSCD 2006年第3期270-273,共4页
In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied... In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of MgESiO4. The thickness of the ceramic coatings increases with the current density increasing, when the current density is 12 A·dm^-2, the thermal shock resistance of the produced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so. 展开更多
关键词 micro-arc oxidation ceramic coatings thermal shock resistance magnesium alloy
下载PDF
Effect of Rare Earth on Thermal Shock Resistance of Steel 9Cr2Mo 被引量:3
4
作者 李慧 郭铁波 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第2期153-156,共4页
The effect of rare earth elements on thermal shock resistance of cold roller steel 9Cr2Mo was investigated by means of X-ray diffractometry and optical microscopy. Experimental results show that the process of carbide... The effect of rare earth elements on thermal shock resistance of cold roller steel 9Cr2Mo was investigated by means of X-ray diffractometry and optical microscopy. Experimental results show that the process of carbide precipitation of heat effect zone is restrained by adding RE elements in steel 9Cr2Mo. Therefore, thermal shock resistance of this steel can be improved. 展开更多
关键词 rare earths steel 9Cr2Mo thermal shock resistance
下载PDF
Thermal Shock Resistance of Nano SiC-BN Composites 被引量:2
5
作者 YANG Gangbin XI Xiaojing +1 位作者 QIAO Guanjun JIN Zhihao 《China's Refractories》 CAS 2009年第1期17-20,共4页
Nano SiC - BN composite powders were prepared by dissolving analytically pure H3BO3 and CO( NH2 )2 with the mole ratio of 1:2.5 in the absolute alcohol, adding 80% E-SiC with 0. 2 μm average grain size while stirr... Nano SiC - BN composite powders were prepared by dissolving analytically pure H3BO3 and CO( NH2 )2 with the mole ratio of 1:2.5 in the absolute alcohol, adding 80% E-SiC with 0. 2 μm average grain size while stirring, firing at 850 ℃ in nitrogen (purity: 99. 99%, pressure: O. 92 -0. 93 MPa) for 15 h. Nano SiC -BN composite specimens were prepared by hot-pressed sintering the nano SiC - BN composite powder in N2 atmosphere with 0. 92 - 0. 93 MPa and at 30 MPa axial pressure for 0. 5 - 1 h at 1 750 - 1 800 ℃. The thermal shock resistance of nano SiC -BN composites was studied by three-point bending, TEM and SEM. The results show that, adding BN can decrease the modulus of elasticity of SiC materials, which improves thermal shock resistance;furthermore, because of the large difference of thermal expansion coefficient between matrix SiC and second phase hexa-BN, thermal mismatch effect results in intercrystalline delamination of h-BN grains and forming many micropores in composite ceramic, which can relax the thermal expansion caused by high tempera- ture effectively, and improve the thermal shock resistance significantly. 展开更多
关键词 thermal shock resistance COMPOSITE Silicon carbide Boron nitride
下载PDF
Effect of Fused MgO-ZrO_2 Clinker Addition on Thermal Shock Resistance of MgO-ZrO_2 Unfired Bricks 被引量:1
6
作者 LI Jiwei ZHOU Ningsheng BAI Hongyu 《China's Refractories》 CAS 2008年第4期11-15,共5页
MgO -ZrO2 unfired bricks with ZrO2 content up to 8% at the interval of 2% were prepared, using fused magnesia ( MgO : 97% ) and fused MgO - ZrO2 clinker ( ZrO2 : 14. 33% ) as starting materials and phenolic resi... MgO -ZrO2 unfired bricks with ZrO2 content up to 8% at the interval of 2% were prepared, using fused magnesia ( MgO : 97% ) and fused MgO - ZrO2 clinker ( ZrO2 : 14. 33% ) as starting materials and phenolic resin as binder. The effects of ZrO2 content on thermal shock resistance (TSR) and other properties such as cold and hot modulus of rupture have been investigated. Re- sidual cold modulus of rupture ratio after heating at 1 000 ℃ and quenching by air blowing was adopted to characterize TSR. Addition of the MgO -ZrO2 clinker improves TSR, attributing to the microcrack toughening effect by thermal expansion mismatch between different phases. When ZrO2 content goes above 4%. the impro- ving effect tends to be moderate. The introduction of MgO- ZrO2 clinker can also improve the HMOR at 1 500 ℃, while the increased ZrO2 content reduces CMOR of the bricks prefired at 1 600 ℃, due to the thermal expansion mismatch effect. Compromising the overall properties, the optimal ZrO2 content for such magnesia based unfired brick is suggested to be 4%. 展开更多
关键词 Magnesia - zirconia system Unfired brick thermal shock resistance Magnesia-zirconia clinker
下载PDF
Thermal Shock Resistances of FeMnCr/Cr_3C_2 Coatings Deposited by Arc Spraying 被引量:1
7
作者 罗来马 郦剑 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期243-247,共5页
Arc spraying with the cored wires was applied to deposit FeMnCr/Cr3C2 coatings on low carbon steel substrates, namely FM1, FM2 and FM3. Thermal shock resistances of the coatings were investigated to assess the influen... Arc spraying with the cored wires was applied to deposit FeMnCr/Cr3C2 coatings on low carbon steel substrates, namely FM1, FM2 and FM3. Thermal shock resistances of the coatings were investigated to assess the influence of Cr3C2 content on thermal shock resistance. Characteristics of the coatings under thermal cycling test were studied by optical microscopy, field emission scanning electron microscope (FE-SEM) and energy dispersion spectrum (EDS), X-ray diffraction (XRD). The experimental results show that hardness of the coatings increases, bonding strength decreases slightly with increase of the Cr3C2 content of the coatings. As a result, FM2 coating possesses the best thermal shock resistance, attributing to its better thermal expansion matches and wettability than those of FM3 coating, less oxide rate than that of FM1 coating restraining from cracks formation and propagation in coatings. 展开更多
关键词 arc swaying Cr3C2 particles FeMnCr/Cr3C2 coating thermal shock resistance
下载PDF
Effects of Additive CeO_2 on Thermal Shock Resistance of Plasma-Sprayed Cr_2O_3 Coating
8
作者 WANG Yin-zhen SUN Yong-xing, HE Yan-ling ( University of Pettroleum, Dongying 257062, China Northwestern Polytechnical University, Xi’ an 710072, China) 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期61-61,共1页
The influence of CeO2 with different content on the thermal shock resistance of plasmasprayed Cr2O3 coating was investigated. The thermal shock failure mechanism of coating was also studied. It is found that the t... The influence of CeO2 with different content on the thermal shock resistance of plasmasprayed Cr2O3 coating was investigated. The thermal shock failure mechanism of coating was also studied. It is found that the thermal shock failure mechanism of coating is thermal stress fatigue destruction, and the destruction takes place at interface of ceramic and bond coating. The experimental results show that the lifetime of coating fracture and failure increase considerably when 3% CeO2 is added into the plasma-sprayed Cr2O3 coating. The suitable content of CeO2 makes the microcracks exist in network form. The microcrack net can release internal stress in coating, delay the crack forming and expanding and decrease holes in coating. Thus the thermal shock resistance increase largely. 展开更多
关键词 rare earths plasma-spray ceramic coating thermal shock resistance failure mechanism
下载PDF
Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics
9
作者 Tianbao CHENG Weiguo LI +2 位作者 Yushan SHI Wei LU Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期201-210,共10页
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TS... The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better. 展开更多
关键词 thermal shock resistance(TSR) ultra-high temperature ceramic(UHTC) mechanical boundary condition temperature-dependent material property thermal environment
下载PDF
Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics
10
作者 李卫国 成天宝 +1 位作者 张如炳 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第11期1351-1360,共10页
Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented expl... Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented explicitly in its dimensionless form. A new stress reduction factor is introduced for the purpose of comparison. The proper- ties and appropriate conditions of the stress reduction factor, the first and second ther- mal shock resistance (TSR) parameters for the high and low Biot numbers, respectively, and the approximation formulas for the intermediate Blot number-interval are discussed. To investigate the TSR of ceramics more accurately, it is recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rup- ture dimensionless time can be used to characterize the TSR of ceramics intuitively and legibly. 展开更多
关键词 stress reduction factor thermal shock resistance (TSR) parameter ceram-ics Biot number Fourier number
下载PDF
Thermal Shock Resistance of Bauxite-based β-Sialon Bonded Corundum Materials
11
作者 LIUZhanjie ZHANGHaijun ZHONGXiangchong 《China's Refractories》 CAS 2005年第1期9-12,共4页
Thermal shock resistant properties of reaction sintered bauxite-based β-Sialon bonded corundum have been investigated, and the results are compared with those of Al_ 2O_ 3 based counterpart. It is found they all ha... Thermal shock resistant properties of reaction sintered bauxite-based β-Sialon bonded corundum have been investigated, and the results are compared with those of Al_ 2O_ 3 based counterpart. It is found they all have very good thermal shock resistance. Their residual strength ratios after one thermal shock cycle at ΔT=1200℃ and ΔT=1350℃ are 61%~73% and 53%~65% respectively. Their critical temperature difference (TSR) is 600℃~800℃. TSR parameters are calculated based on thermal expansion, modulus of elasticity, and fracture toughness determined. The reasons for improving TSR of these composite materials are discussed. 展开更多
关键词 thermal shock resistance Bauxite-based Sialon CORUNDUM
下载PDF
Relation Between Sintering Reactivity of Matrix and Thermal Shock Resistance of Ultra-low Cement Bonded Corundum-spinel Castables for Fired Purging Plugs
12
作者 ZHANG Ju LONG Bin +7 位作者 ZHOU Yunpeng Andreas BUHR WANG Feng CUI Qingyang XIE Guofeng DING Dafei JIA Quanli YE Guotian 《China's Refractories》 CAS 2018年第4期13-20,共8页
Purging plugs installed in the bottom of steel ladles are widely used for the secondary refining of high quality steel grades.The dynamic service conditions and temperature gradients caused by the cold inert gas blown... Purging plugs installed in the bottom of steel ladles are widely used for the secondary refining of high quality steel grades.The dynamic service conditions and temperature gradients caused by the cold inert gas blown through the plug during stirring create a strong thermal shock impact on the materials.This can affect its service life and restrict the safety and efficiency of steel making if the plug fails during use.In this work,the influence of the particle size distribution (PSD) and amount of reactive alumina on the sintering behavior of ultra-low cement bonded corundum-spinel based castables was investigated on lab scale.The relationship between sintering reactivity of matrix and thermal shock resistance of castables was evaluated in detail.Results show that the sintering of castables can be intensified by using finer reactive alumina.However,excessive sintering of the castable through finer reactive alumina is negative for thermal shock resistance.The microstructure characterization reveals that castables with more intense sintering show denser matrix structure,which is less effective in hampering crack propagation and therefore results in decline of their thermal shock resistance. 展开更多
关键词 reactive alumina corundum-spinel castable sintering reactivity thermal shock resistance
下载PDF
Design of Composite Ladle Shroud for Improving Thermal Shock Resistance
13
作者 LIU Guoqi LI Hongxia +3 位作者 YANG Wengang QIAN Fan YU Jianbin MA Weikui 《China's Refractories》 CAS 2021年第1期31-34,共4页
A ladle shroud is one of the functional refractories for continuous casting,which undergoes severe thermal shock by molten steel when used without pre-heating.The composite ladle shroud with an insulating liner presen... A ladle shroud is one of the functional refractories for continuous casting,which undergoes severe thermal shock by molten steel when used without pre-heating.The composite ladle shroud with an insulating liner presents excellent thermal shock resistance.Finite element simulation is an effective method to explore the maximum thermal stress for predicting the thermal shock resistance of ladle shrouds.In this paper,the influence of the lining materials and the structure of ladle shrouds on the thermal stress distribution is systematically researched.The working mechanism of the lining material on the body material is also presented.Lining materials with low thermal expansion,elastic modulus and thermal conductivity are helpful to improve the thermal shock resistance and an optimum lining thickness is suggested.The lining material can both serve as thermal resistance for the body material to buffer the thermal stress,and apply a strain load to the body material by the thermal strain to increase the stress. 展开更多
关键词 composite ladle shroud thermal shock resistance finite element simulation thermal stress
下载PDF
Preparation of yttrium oxide coating with enhanced thermal shock resistance on refractories used for titanium alloy melting and casting
14
作者 Ao Chen Yan Ma +7 位作者 Zhou-fu Wang Hao Liu Xi-tang Wang Sen-na Chen Chen-xin Zhang Zi-yi Tang Wei-dong Fu Wei Cheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第6期1411-1422,共12页
In order to enhance the service life of refractories for melting and casting of titanium alloy,preparation of yttrium oxide coatings on the refractories surface is an effective solution.The improvement of thermal shoc... In order to enhance the service life of refractories for melting and casting of titanium alloy,preparation of yttrium oxide coatings on the refractories surface is an effective solution.The improvement of thermal shock stability of the coating is beneficial to its spalling resistance during the high-temperature service,and the available slurry with good performance is the prerequisite.The effects of the varieties and contents of dispersant(sodium tripolyphosphate,sodium hexametaphosphate,sodium pyrophosphate,citric acid and polycarboxylate ammonium salt)and binder(aluminum dihydrogen phosphate,zirconium acetate and yttria sol)on the stability,rheological and thixotropic properties of yttrium oxide waterbased slurry were investigated,and the effects of slurry composition design on the thermal shock resistance of the coating were focused.The results showed that the introduction of polycarboxylate ammonium salt as dispersant significantly improved the stability of the slurry,and the varieties of the binders had significant effects on the dispersibility of the slurry.When aluminum dihydrogen phosphate and polycarboxylate ammonium salt were used as binder and dispersant,respectively,the slurry had better stability,suitable rheological and thixotropic properties.By using aluminum dihydrogen phosphate as binder,the coating had good thermal shock resistance and no obvious cracks were observed for the coating after thermal shock,which was attributed to the yttrium aluminate binding phase generated in the coating.An effective method was provided for preparing yttrium oxide coatings with enhanced thermal shock resistance applied in the process of titanium alloy melting and casting. 展开更多
关键词 Yttrium oxide-Slurry Stability Rheological property Thixotropic property-Coating thermal shock resistance
原文传递
A novel route to enhance high-temperature mechanical property and thermal shock resistance of low-carbon Mgo-C bricks by introducing ZrSiO_(4)
15
作者 Chun-hui Sun Ling-ling Zhu +6 位作者 Hao Yan Wei Zhao Jing-xuan Liu Lin Ren Xian-tang Zhao Xiao-song Tong Shu-wen Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第6期1436-1448,共13页
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ... Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle. 展开更多
关键词 Low-carbon MgO-C brick ZrsiO_(4) Synergistic toughening effect High-temperature mechanical property thermal shock resistance Vacuum oxygen decarburization ladle
原文传递
Study on Chrome-free Purging Plugs for Steel Ladles
16
作者 Yunpeng ZHOU Wang FENG +2 位作者 Shankha CHATTERJEE Andus BUHR Sebastian KLAUS 《China's Refractories》 CAS 2024年第2期41-47,共7页
Purging plug refractories in China typically contain around 3 mass% of super-fine chromium oxide in the matrix in order to improve the performance of the purging plugs, primarily, slag corrosion and wear resistance. A... Purging plug refractories in China typically contain around 3 mass% of super-fine chromium oxide in the matrix in order to improve the performance of the purging plugs, primarily, slag corrosion and wear resistance. Alternatives to chromium oxide containing refractories have gained interest due to health concerns related to the formation of soluble chromium compounds over long storage periods of refractory wastes. Super-ground reactive alumina can replace chromium oxide in purging plug refractories and this paper discussed the new reactive alumina E-SY 88 in comparison to chromium oxide in a typical purging plug castable. The mixing behaviour, wet castable properties, as well as cured, dried, and fired properties at different temperatures up to 1 600 ℃ were compared. In addition, the hot modulus of rupture, creep behaviour, thermal shock resistance and slag corrosion resistance were tested. The microstructure after slag corrosion was investigated by SEM. The results prove that E-SY 88 is an economically viable technical alternative to chromium oxide in purging plug refractories. 展开更多
关键词 purging plug alumina-spinel castable WORKABILITY chromium-free thermal shock resistance
下载PDF
Effect of rare earth elements addition on thermal fatigue behaviors of AZ91 magnesium alloy 被引量:16
17
作者 Hossein Bayani Ehsan Saebnoori 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第2期255-258,共4页
Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cr... Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases. 展开更多
关键词 AZ91 alloy rare earth elements thermal fatigue thermal shock resistance
下载PDF
Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool 被引量:6
18
作者 ZHAO Jun, AI Xing, HUANG Xin-ping (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期61-62,共2页
Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in th... Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and subsequent three-point bending tests of flexural strength diminution. Comparisons were made with results from parallel experiments conducted using a homogeneous Al 2O 3-TiC ceramics. Functionally gradient ceramics exhibited higher retained strength under all thermal shock temperature differences compared to homogeneous ceramics, indicating the higher thermal shock resistance. The experimental results were supported by the calculation of transient thermal stress field. The cutting performance of the Al 2O 3-TiC functionally gradient ceramic tool FG-1 was also investigated in rough turning the cylindrical surface of exhaust valve of diesel engine in comparison with that of a common Al 2O 3-TiC ceramic tool LT55. The results indicated that the tool life of FG-1 increased by 50 percent over that of LT55. Tool life of LT55 was mainly controlled by thermal shock cracking which was accompanied by mechanical shock. While tool life of FG-1 was mainly controlled by mechanical fatigue crack extension rather than thermal shock cracking, revealing the less thermal shock susceptibility of functionally gradient ceramics than that of common ceramics. 展开更多
关键词 functionally gradient materials ceramic tool materials thermal shock resistance transient thermal stress cutting performance
下载PDF
Effect of MnO2 on Properties of SiC-mullite Composite Ceramics for Solar Sensible Thermal Storage 被引量:3
19
作者 徐晓虹 lao xinbin +3 位作者 wu jianfeng zhang yaxiang xu xiaoyang li kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期491-495,共5页
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, a... For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, a-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnOz on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J.(g.K)-1, thermal conductivity of 9.05 W-(m.K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 ℃ to RT). Key words: SiC-mullite composite ceramics; MnO2; solar sensible thermal storage; non-contact graphite-buried sintering; thermal shock resistance 展开更多
关键词 SiC-mullite composite ceramics Mn02 solar sensible thermal storage non-contact graphite-buried sintering thermal shock resistance
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
20
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部