As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurizatio...As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurization is inevitable in China, however, it is rather difficult to reach the stipulated standards without any compulsory administrative measures of the government. What are the exact difficulties and solutions for the desulphurization in power plants?展开更多
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat...Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.展开更多
Micro-hotplate (MHP) technology is one key part in the manufacturing of gas sensors. The pursuit of analytical solutions for the temperature distribution and also thermal stresses within the MHP is of intrinsic scie...Micro-hotplate (MHP) technology is one key part in the manufacturing of gas sensors. The pursuit of analytical solutions for the temperature distribution and also thermal stresses within the MHP is of intrinsic scientific interest. In this study, analytical solutions for the temperature field, and both radial and tangential stresses and van Mises stress for circular MHP were obtained. Two geometries were considered: one had a circular heater at the center and the other had a circular heater at the center and an annular heater within the membrane part. Internal heat generation was incorporated in the energy equation for the MHP and different values of convection heat transfer coefficient were used at the upper and lower surfaces of the MHP. It has been shown that the MHP with two heaters can provide more uniform temperature field compared with the MHP with one heater. The main objective of this work is to provide an exact analytical solution for thermal stresses within the circular micro-hcater with a simple geometry as a benchmark, from mathematical point of view, against which the accuracy of new numerical schemes can be checked. To make sure that the analytical procedure is correct, the analytical results are checked against numerical solutions derived from finite element simulation. Since the analytical models for the temperature field and especially for the thermal stresses of MHP ace seldom investigated in the literature, the obtained results are believed to facilitate the design and performance evaluation of MHPs as well.展开更多
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Chr...The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions.The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method(HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results,decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter,and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.展开更多
Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design...Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.展开更多
Using asymptotical analysis,we investigate the characteristics of the coupled thermal and solutal capillary convection with the radial temperature and solute concentration gradients in a shallow annular pool with the ...Using asymptotical analysis,we investigate the characteristics of the coupled thermal and solutal capillary convection with the radial temperature and solute concentration gradients in a shallow annular pool with the free surface.The pool is heated from the outer cylinder with high solutal concentration and cooled at the inner cylinder with low solutal concentration.The asymptotic solution is obtained in the core region in the limit as the aspect ratio,which is defined as the ratio of the depth to the width of the pool,goes to zero.The comparison with the previous work certifies that the asymptotic solution is right and believable.The influences of the solutal capillary force,the buoyant force,the Soret effect and the geometric parameters on the fluid flow are analyzed.展开更多
In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transver...In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transverse CTEs of UD composites by means of thermo-elastic mechanics analysis. The proposed model is supposed to be a concentric cylinder with a transversely isotropic fiber embedded in an isotropic matrix, and it is subjected to a uniform temperature change. Then a concise and explicit formula is offered for each CTE. Finally, some finite element(FE) models are created by a finite element program MSC. Patran according to different material systems and fiber volume fractions. In addition, the available experimental data and results of other analytical solutions of CTEs are presented. Comparisons are made among the results of the cylinder model,the finite element method(FEM), experiments, and other solutions, which show that the predicted CTEs by the new model are in good agreement with the experimental data. In particular, transverse CTEs generally offer better agreements than those predicted by most of other solutions.展开更多
Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constan...Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constant viscosity and Reynolds' viscosity model. The coupled ordinary differential equations governing the flow in cylindrical coordinates, are transformed into dimensionless forms using appropriate transformations, and then solved numerically. Solutions using Maple are presented in tabular form and given in terms of dimensionless central fluid velocity and temperature, skin friction and heat transfer rate for three parametric values in the Reynolds' case. The numerical results for the velocity and temperature fields are also presented through graphs. Bifurcations are discussed using shooting method. Comparisons are also made between the present results and those of previous work, and thus verify the validity of the provided numerical solutions. Important properties of thermal criticality are provided for variable viscosity parameter and reaction order. Further numerical results are presented in the form of tables and graphs for transition of physical parameters, while varying certain flow and fluid material parameters. Also, the flow behaviour of the reactive fluid of third-grade is compared with those of the Newtonian reactive fluid.展开更多
A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxid...A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.展开更多
文摘As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurization is inevitable in China, however, it is rather difficult to reach the stipulated standards without any compulsory administrative measures of the government. What are the exact difficulties and solutions for the desulphurization in power plants?
基金The project supported by the National Natural Science Foundation of China (50578008) The English text was polished by Yunming Chen
文摘Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.
文摘Micro-hotplate (MHP) technology is one key part in the manufacturing of gas sensors. The pursuit of analytical solutions for the temperature distribution and also thermal stresses within the MHP is of intrinsic scientific interest. In this study, analytical solutions for the temperature field, and both radial and tangential stresses and van Mises stress for circular MHP were obtained. Two geometries were considered: one had a circular heater at the center and the other had a circular heater at the center and an annular heater within the membrane part. Internal heat generation was incorporated in the energy equation for the MHP and different values of convection heat transfer coefficient were used at the upper and lower surfaces of the MHP. It has been shown that the MHP with two heaters can provide more uniform temperature field compared with the MHP with one heater. The main objective of this work is to provide an exact analytical solution for thermal stresses within the circular micro-hcater with a simple geometry as a benchmark, from mathematical point of view, against which the accuracy of new numerical schemes can be checked. To make sure that the analytical procedure is correct, the analytical results are checked against numerical solutions derived from finite element simulation. Since the analytical models for the temperature field and especially for the thermal stresses of MHP ace seldom investigated in the literature, the obtained results are believed to facilitate the design and performance evaluation of MHPs as well.
基金Project supported by the Natural Science and Engineering Research Council(NSERC)of Canada(No.NSERC-RGPIN204992)
文摘The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions.The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method(HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results,decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter,and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.
基金the support by Consumerizing Solid State Lighting(CSSL)
文摘Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.
基金supported by the National Natural Science Foundation of China (Grant No 51176209)
文摘Using asymptotical analysis,we investigate the characteristics of the coupled thermal and solutal capillary convection with the radial temperature and solute concentration gradients in a shallow annular pool with the free surface.The pool is heated from the outer cylinder with high solutal concentration and cooled at the inner cylinder with low solutal concentration.The asymptotic solution is obtained in the core region in the limit as the aspect ratio,which is defined as the ratio of the depth to the width of the pool,goes to zero.The comparison with the previous work certifies that the asymptotic solution is right and believable.The influences of the solutal capillary force,the buoyant force,the Soret effect and the geometric parameters on the fluid flow are analyzed.
文摘In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transverse CTEs of UD composites by means of thermo-elastic mechanics analysis. The proposed model is supposed to be a concentric cylinder with a transversely isotropic fiber embedded in an isotropic matrix, and it is subjected to a uniform temperature change. Then a concise and explicit formula is offered for each CTE. Finally, some finite element(FE) models are created by a finite element program MSC. Patran according to different material systems and fiber volume fractions. In addition, the available experimental data and results of other analytical solutions of CTEs are presented. Comparisons are made among the results of the cylinder model,the finite element method(FEM), experiments, and other solutions, which show that the predicted CTEs by the new model are in good agreement with the experimental data. In particular, transverse CTEs generally offer better agreements than those predicted by most of other solutions.
基金supported by Pastor E. A. Adeboye endowed Professorial Chair and conducted at the Department of Mathematics, University of Lagos, Lagos, Nigeria while on leave from
文摘Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constant viscosity and Reynolds' viscosity model. The coupled ordinary differential equations governing the flow in cylindrical coordinates, are transformed into dimensionless forms using appropriate transformations, and then solved numerically. Solutions using Maple are presented in tabular form and given in terms of dimensionless central fluid velocity and temperature, skin friction and heat transfer rate for three parametric values in the Reynolds' case. The numerical results for the velocity and temperature fields are also presented through graphs. Bifurcations are discussed using shooting method. Comparisons are also made between the present results and those of previous work, and thus verify the validity of the provided numerical solutions. Important properties of thermal criticality are provided for variable viscosity parameter and reaction order. Further numerical results are presented in the form of tables and graphs for transition of physical parameters, while varying certain flow and fluid material parameters. Also, the flow behaviour of the reactive fluid of third-grade is compared with those of the Newtonian reactive fluid.
基金supported by the National Natural Science Foundation of China(Nos.60406004,60890193,60736033)the National Key Micrometer/Nanometer Processing Laboratory,China
文摘A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation f ollowed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700℃could be etched off in a homothermal(70℃) KOH solution while the KOH solution had no etching effects on the region of the AlGaN/GaN heterostructure protected by a SiO_2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900℃followed by 30 min treatment in 70℃KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.