A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical bound...A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.展开更多
The current situations of thermal spraying materials in China are described in this paper. The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material ...The current situations of thermal spraying materials in China are described in this paper. The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders, wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires, and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.展开更多
The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in s...The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in subatmospheric environment on weld formation and welding with sinusoidal modulation of laser power on the stability of LW process in subatmospheric environment were explored.The AZ31magnesium(Mg)alloy was used as the test materials.The test result revealed that the weld penetration in subatmospheric environment can increase by more than ten times compared with that under normal pressure.After the keyhole depth greatly rises,significantly periodic local bulge is observed on the backwall surface of the keyhole and the position of the bulge shifts along the direction of the keyhole depth.Eventually,the hump-shaped surface morphology of the welded seam is formed;moreover,the weld width in local zones in the lower part of the welded seam remarkably grows.During LW in subatmospheric environment,the weld penetration can be further greatly increased through power modulation.Besides,power modulation can inhibit the occurrence of bulges in local zones on the backwall of the keyhole during LW in subatmospheric environment,thus further curbing the significant growth of the weld widths of hump-shaped welding beads and local zones in the lower part of welded seams.Finally,the mechanism of synchronously improving the thermal efficiency and stability of LW process of highly reflective materials through power modulation in subatmospheric environment was illustrated.This was conducted according to theoretical analysis of recoil pressure and observation results of dynamic behaviors of laser induced plasma clouds and keyholes in the molten pool through high speed photography.展开更多
The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray ene...The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray energy dispersion spectroscope,X-ray diffractometer and wear testing machine.The results show that the addi- tion of 8% CeO_2 can improve the microstructure,microhardness and wear resistance of coatings significantly.展开更多
This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and eff...This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and effects of ultrasonic vibrations on process effectiveness and joint quality. The trends of various aspects with and without ultrasonic vibrations in FSW process are studied and presented. The influence of ultrasonic vibrations on welding loads, temperature history, weld morphology, material flow, weld microstructure and mechanical properties are revisited. Ultrasonic assisted FSW offers numerous advantages over the conventional FSW process. The superimposing of high-frequency vibrations improves various phenomena of the process and the physical,metallurgical,mechanical and tribological properties of the welded joint. The ultrasonic assisted FSW process has a potential to benefit the industry sector. A checklist listing the materials and process parameters used in the documented studies has been presented for quick reference.展开更多
A good understanding of melting and resolidification of the substrate will help us to achieve better bonding.Anumerical model is developed to investigate the solidification of the droplet,and melting and resolidificat...A good understanding of melting and resolidification of the substrate will help us to achieve better bonding.Anumerical model is developed to investigate the solidification of the droplet,and melting and resolidification of thesubstrate.The molybdenum powder spraying onto three different substrates:a stainless steel,brass(70%Cu)andaluminum by atmospheric plasma spraying has been investigated.The maximum melting depth of the substrate hasbeen measured and compared with the numerical prediction.Experimental results show that the material propertiesof the splat and substrate and melting temperature of the substrate play the important roles on substrate melting.A dimensionless parameter,temperature factor,has been proposed and served as an indicator for substrate melting.展开更多
HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powder...HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powders.The microstructures of the as-prepared WC-12%Co coatings were then characterized by using XRD analyzer and SEM.The mechanical properties of the two coatings were evaluated by microhardness test,bend test,cup test,tensile test and abrasive wear test.The results showed that the mechanical properties of WC-12%Co coatings sprayed with nanostructured WC-12%Co powder is higher than that of coatings sprayed with microstructured WC-12%Co powders,and the reasons were discussed.展开更多
Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The a...Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The aim is to validate the thermal-metallurgical-mechanical models taking into account the metallurgical transformations in the finite element codes Sysweld (Framasoft) and Code Aster (EDF). The test is performed on a thin disc submitted to a thermal cycle loading by means of a CO2 laser beam, which leads to metallurgical phase transformations. The thermal, metallurgical and mechanical numerical results have been compared to the experimental results (temperatures, sizes of transformed zones, displacements and residual stresses and strains). The main objective of the numerical analysis is to have some results which enable to give some indications on the ability of the numerical codes to describe the observed phenomena. For that, it is necessary to simulate accurately the thermo-metallurgical history. The comparison of experimental results with the numerical ones leads to some interesting orientations related to the capacities of the considered models to describe the observed phenomena.展开更多
This review is done essentially to study results in the field of synthesis and characterization of Carbon Nanotubes (CNT’s) reinforced nanocomposite coatings using thermal sprayed coatings. CNT reinforced nanocomposi...This review is done essentially to study results in the field of synthesis and characterization of Carbon Nanotubes (CNT’s) reinforced nanocomposite coatings using thermal sprayed coatings. CNT reinforced nanocomposite coatings produced by thermal spray process are being developed for a wide variety of applications, e.g. aerospace, automotive and sports equipment industries. It is anticipated that, if properly deposited, nanocomposite ceramic coatings could also provide improved properties like wear resistance and thermal barrier coatings. These results clearly demonstrate that the significant improvement in coating performance can be achieved by utilizing proper thermal sprayed nanocomposite coatings. Thermal sprayed nanocomposite coatings shows improvement of resistance to wear, erosion, corrosion and mechanical properties. The purpose of this paper is to review CNT reinforced nanocomposite coatings using thermal spray by various researchers.展开更多
In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the fr...In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.展开更多
基金the financial support from the National Natural Science Foundation of China (Nos. 52005297, 52035005)the Key Research and Development Program of Shandong Province, China (No. 2021ZLGX01)。
文摘A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.
文摘The current situations of thermal spraying materials in China are described in this paper. The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders, wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires, and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.
基金supported by National Natural Science Foundation of China(Grants No.52005393,51275391)National Thousand Talents Program of China(Grant No.WQ2017610446)。
文摘The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in subatmospheric environment on weld formation and welding with sinusoidal modulation of laser power on the stability of LW process in subatmospheric environment were explored.The AZ31magnesium(Mg)alloy was used as the test materials.The test result revealed that the weld penetration in subatmospheric environment can increase by more than ten times compared with that under normal pressure.After the keyhole depth greatly rises,significantly periodic local bulge is observed on the backwall surface of the keyhole and the position of the bulge shifts along the direction of the keyhole depth.Eventually,the hump-shaped surface morphology of the welded seam is formed;moreover,the weld width in local zones in the lower part of the welded seam remarkably grows.During LW in subatmospheric environment,the weld penetration can be further greatly increased through power modulation.Besides,power modulation can inhibit the occurrence of bulges in local zones on the backwall of the keyhole during LW in subatmospheric environment,thus further curbing the significant growth of the weld widths of hump-shaped welding beads and local zones in the lower part of welded seams.Finally,the mechanism of synchronously improving the thermal efficiency and stability of LW process of highly reflective materials through power modulation in subatmospheric environment was illustrated.This was conducted according to theoretical analysis of recoil pressure and observation results of dynamic behaviors of laser induced plasma clouds and keyholes in the molten pool through high speed photography.
文摘The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray energy dispersion spectroscope,X-ray diffractometer and wear testing machine.The results show that the addi- tion of 8% CeO_2 can improve the microstructure,microhardness and wear resistance of coatings significantly.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)the GKP Acknow ledges the Research Fellow ship of Shandong University
文摘This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and effects of ultrasonic vibrations on process effectiveness and joint quality. The trends of various aspects with and without ultrasonic vibrations in FSW process are studied and presented. The influence of ultrasonic vibrations on welding loads, temperature history, weld morphology, material flow, weld microstructure and mechanical properties are revisited. Ultrasonic assisted FSW offers numerous advantages over the conventional FSW process. The superimposing of high-frequency vibrations improves various phenomena of the process and the physical,metallurgical,mechanical and tribological properties of the welded joint. The ultrasonic assisted FSW process has a potential to benefit the industry sector. A checklist listing the materials and process parameters used in the documented studies has been presented for quick reference.
基金This work was supported by the National Science Foundation under award No.CTS-9876198MRSEC program under award No.DMR-00800221.
文摘A good understanding of melting and resolidification of the substrate will help us to achieve better bonding.Anumerical model is developed to investigate the solidification of the droplet,and melting and resolidification of thesubstrate.The molybdenum powder spraying onto three different substrates:a stainless steel,brass(70%Cu)andaluminum by atmospheric plasma spraying has been investigated.The maximum melting depth of the substrate hasbeen measured and compared with the numerical prediction.Experimental results show that the material propertiesof the splat and substrate and melting temperature of the substrate play the important roles on substrate melting.A dimensionless parameter,temperature factor,has been proposed and served as an indicator for substrate melting.
文摘HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powders.The microstructures of the as-prepared WC-12%Co coatings were then characterized by using XRD analyzer and SEM.The mechanical properties of the two coatings were evaluated by microhardness test,bend test,cup test,tensile test and abrasive wear test.The results showed that the mechanical properties of WC-12%Co coatings sprayed with nanostructured WC-12%Co powder is higher than that of coatings sprayed with microstructured WC-12%Co powders,and the reasons were discussed.
文摘Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The aim is to validate the thermal-metallurgical-mechanical models taking into account the metallurgical transformations in the finite element codes Sysweld (Framasoft) and Code Aster (EDF). The test is performed on a thin disc submitted to a thermal cycle loading by means of a CO2 laser beam, which leads to metallurgical phase transformations. The thermal, metallurgical and mechanical numerical results have been compared to the experimental results (temperatures, sizes of transformed zones, displacements and residual stresses and strains). The main objective of the numerical analysis is to have some results which enable to give some indications on the ability of the numerical codes to describe the observed phenomena. For that, it is necessary to simulate accurately the thermo-metallurgical history. The comparison of experimental results with the numerical ones leads to some interesting orientations related to the capacities of the considered models to describe the observed phenomena.
文摘This review is done essentially to study results in the field of synthesis and characterization of Carbon Nanotubes (CNT’s) reinforced nanocomposite coatings using thermal sprayed coatings. CNT reinforced nanocomposite coatings produced by thermal spray process are being developed for a wide variety of applications, e.g. aerospace, automotive and sports equipment industries. It is anticipated that, if properly deposited, nanocomposite ceramic coatings could also provide improved properties like wear resistance and thermal barrier coatings. These results clearly demonstrate that the significant improvement in coating performance can be achieved by utilizing proper thermal sprayed nanocomposite coatings. Thermal sprayed nanocomposite coatings shows improvement of resistance to wear, erosion, corrosion and mechanical properties. The purpose of this paper is to review CNT reinforced nanocomposite coatings using thermal spray by various researchers.
文摘In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.