Pesticide residues on food are threatening human health and wellbeing,ecological security.Food processing is one of the necessary ways to eliminate residues to guarantee the safety and sustainable development of the e...Pesticide residues on food are threatening human health and wellbeing,ecological security.Food processing is one of the necessary ways to eliminate residues to guarantee the safety and sustainable development of the environment.This review outlines the mechanisms,applications,and factors influencing the efficiency as well as their limitations of pesticide residue elimination technologies.Conventional thermal processing technologies like drying,blanching,baking,and roasting have been proved to reduce pesticides extensively whereas sometimes concentration effects occur,and more toxic metabolites or by-products are generated.Additionally,the negative effects on quality attributes of fruits and vegetables(F&V)should be considered.Several innovative non-thermal processing technologies like ultrasound,cold plasma,high-pressure processing,and pulsed electric fields have flourished currently,which show great ability to eliminate pesticide residues significantly with minimal impact on the quality of F&V.In particular,heat-sensitive nutrients like ascorbic acid,phenolics,and carotenoids would retain to a great extent.Similarly,these technologies have their limitations.Furthermore,there is much information about combined processing technology affecting the pesticide behaviors of F&V.Finally,the future developments for pesticide elimination of these technologies are identified and discussed.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
Based on the thermal tomography technology, this thesis tries to calculate quantity and distribution of heat source in vivo from body surface temperature. A superposition temperature image of a number of point heat so...Based on the thermal tomography technology, this thesis tries to calculate quantity and distribution of heat source in vivo from body surface temperature. A superposition temperature image of a number of point heat sources is surface fitted to get the Q of heat sources (information of cancer cells) quantitatively. The result can reflect the disease area information because cancer cell's Q value is much higher than that of normal cell. This application is a new try in the diagnosis of breast cancer, which has an important value on the early detection and diagnosis of disease source.展开更多
Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vac...Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.展开更多
We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope p...We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.展开更多
Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hen...Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hence in future low carbon economy. However, a competitive TES technology requires a number of scientific and technological challenges to be addressed including TES materials, TES components and devices, and integration of TES devices with energy networks and associated dynamic optimization. This paper provides a perspective of TES technology with a focus on TES materials challenges using molten salts based phase change materials for medium and high temperature applications. Two key challenges for the molten salt based TES materials are chemical incompatibility and low thermal conductivity. The use of composite materials provides an avenue to meeting the challenges. Such composite materials consist of a phase change material, a structural supporting material, and a thermal conductivity enhancement material. The properties of the supporting material could determine the dispersion of the thermal con- ductivity enhancement material in the salt. A right combination of the salt, the structural supporting material, and the thermal conductivity enhancement material could give a hierarchical structure that is able to encapsulate the molten salt and give a substantial enhancement in the thermal conductivity. Understanding of the structure-property relationships for the composite is essential for the formulation design and fabrication of the composite materials. Linking materials properties to the system level performance is recommended as a key future direction of research.展开更多
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t...Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.展开更多
基金This research was supported by the 2115 Talent Development Program of China Agricultural University。
文摘Pesticide residues on food are threatening human health and wellbeing,ecological security.Food processing is one of the necessary ways to eliminate residues to guarantee the safety and sustainable development of the environment.This review outlines the mechanisms,applications,and factors influencing the efficiency as well as their limitations of pesticide residue elimination technologies.Conventional thermal processing technologies like drying,blanching,baking,and roasting have been proved to reduce pesticides extensively whereas sometimes concentration effects occur,and more toxic metabolites or by-products are generated.Additionally,the negative effects on quality attributes of fruits and vegetables(F&V)should be considered.Several innovative non-thermal processing technologies like ultrasound,cold plasma,high-pressure processing,and pulsed electric fields have flourished currently,which show great ability to eliminate pesticide residues significantly with minimal impact on the quality of F&V.In particular,heat-sensitive nutrients like ascorbic acid,phenolics,and carotenoids would retain to a great extent.Similarly,these technologies have their limitations.Furthermore,there is much information about combined processing technology affecting the pesticide behaviors of F&V.Finally,the future developments for pesticide elimination of these technologies are identified and discussed.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘Based on the thermal tomography technology, this thesis tries to calculate quantity and distribution of heat source in vivo from body surface temperature. A superposition temperature image of a number of point heat sources is surface fitted to get the Q of heat sources (information of cancer cells) quantitatively. The result can reflect the disease area information because cancer cell's Q value is much higher than that of normal cell. This application is a new try in the diagnosis of breast cancer, which has an important value on the early detection and diagnosis of disease source.
基金funded by Shanghai Sailing Program (No.19YF1410800)National Natural Science Foundation of China(No. 21908056)。
文摘Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1731242 and 61621001)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA15010400 and XDA04060605)
文摘We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.
基金supported by a Focused Deployment Project of Chinese Academy of Sciences(KGZD-EW-302-1)Key Technologies R&D Program of China(No.2012BAA03B03)UK EPSRC under grants EP/F060955/1 and EP/L014211/1
文摘Thermal energy is at the heart of the whole energy chain providing a main linkage between the primary and secondary energy sources. Thermal energy storage (TES) has a pivotal role to play in the energy chain and hence in future low carbon economy. However, a competitive TES technology requires a number of scientific and technological challenges to be addressed including TES materials, TES components and devices, and integration of TES devices with energy networks and associated dynamic optimization. This paper provides a perspective of TES technology with a focus on TES materials challenges using molten salts based phase change materials for medium and high temperature applications. Two key challenges for the molten salt based TES materials are chemical incompatibility and low thermal conductivity. The use of composite materials provides an avenue to meeting the challenges. Such composite materials consist of a phase change material, a structural supporting material, and a thermal conductivity enhancement material. The properties of the supporting material could determine the dispersion of the thermal con- ductivity enhancement material in the salt. A right combination of the salt, the structural supporting material, and the thermal conductivity enhancement material could give a hierarchical structure that is able to encapsulate the molten salt and give a substantial enhancement in the thermal conductivity. Understanding of the structure-property relationships for the composite is essential for the formulation design and fabrication of the composite materials. Linking materials properties to the system level performance is recommended as a key future direction of research.
基金supported by the National Key Research and Development Plan of China (Grant No. 2016YFC0600901)the National Natural Science Foundation of China (Grant Nos. 51374214, 51134005 & 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.