To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with m...To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink.展开更多
With the redesigned jigs for the Thermecmastor-Z thermal simulator,the feasibility of using 3 kinds of Gleeble specimens in the Thermecmastor-Z simulator was investigated. Results show that Gleeble specimens can be us...With the redesigned jigs for the Thermecmastor-Z thermal simulator,the feasibility of using 3 kinds of Gleeble specimens in the Thermecmastor-Z simulator was investigated. Results show that Gleeble specimens can be used in the Thermecmastor-Z simulator. The tension tests in the Gleeble and Thermecmastor-Z simulators produced results with the same trend,which proves that the high temperature ductility of Gleeble specimens can be reflected by the Thermecmastor- Z simulator. In addition,as the Thermecmastor-Z simulator offers a wider heating zone,better cross-section shrinkage and elongation of specimens can be achieved under the same test conditions.展开更多
Nowdays there are several manual or half-automatic methods developed to drivethe DNA micro-fluid of transgenic micro-injection and they often fail to control precisely theinjection volume at picolitres level. Micro-si...Nowdays there are several manual or half-automatic methods developed to drivethe DNA micro-fluid of transgenic micro-injection and they often fail to control precisely theinjection volume at picolitres level. Micro-size of the injector tip and viscosity of the DNA liquidalso lead to dead area of volume control. An adequate way is presented utilizing temperaturegradients to direct liquid flow in the pipette from the wanner to the cooler. Compared with theprevious ones, this way is helpful in decreasing the dead area of controlling through decreasing theviscous rate of DNA liquid, which changes as the temperature varies. The DNA liquid is pushed by asheer Stress at the liquid-pipette interface, which emerges when viscous rate of the liquid changes.Preliminary experimenting results show the efficiency and convenience of this way in improving thesystem's characteristics.展开更多
Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been ...Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been evaluated and compared to negative expansion coefficient αtens due to tension effects. The overall thermal expansion coefficient is the sum?of?αbond?and αtens. Below 60 K, αtens is greater than αbond? yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 Å. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed.展开更多
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre...In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.展开更多
对2300 mm CVC六辊冷轧机轧制3102合金空调箔边紧问题进行分析研究,主要因为轧辊边部散热大,热凸度不均,导致边紧肋松缺陷。通过调整输入宽度,增加板型辊测量环覆盖率,调整前后张力,增大C4和A16板形目标曲线系数,有效改善边紧肋松板形缺...对2300 mm CVC六辊冷轧机轧制3102合金空调箔边紧问题进行分析研究,主要因为轧辊边部散热大,热凸度不均,导致边紧肋松缺陷。通过调整输入宽度,增加板型辊测量环覆盖率,调整前后张力,增大C4和A16板形目标曲线系数,有效改善边紧肋松板形缺陷,并将裂变宽度由10 mm控制到5 mm以内,提高了空调箔坯料成品率。展开更多
文摘To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink.
文摘With the redesigned jigs for the Thermecmastor-Z thermal simulator,the feasibility of using 3 kinds of Gleeble specimens in the Thermecmastor-Z simulator was investigated. Results show that Gleeble specimens can be used in the Thermecmastor-Z simulator. The tension tests in the Gleeble and Thermecmastor-Z simulators produced results with the same trend,which proves that the high temperature ductility of Gleeble specimens can be reflected by the Thermecmastor- Z simulator. In addition,as the Thermecmastor-Z simulator offers a wider heating zone,better cross-section shrinkage and elongation of specimens can be achieved under the same test conditions.
基金This project is supported by National Natural Science Foundation of China(No.60075023)Provincial Natural Foundation of Guangdong, China(No.20000041).
文摘Nowdays there are several manual or half-automatic methods developed to drivethe DNA micro-fluid of transgenic micro-injection and they often fail to control precisely theinjection volume at picolitres level. Micro-size of the injector tip and viscosity of the DNA liquidalso lead to dead area of volume control. An adequate way is presented utilizing temperaturegradients to direct liquid flow in the pipette from the wanner to the cooler. Compared with theprevious ones, this way is helpful in decreasing the dead area of controlling through decreasing theviscous rate of DNA liquid, which changes as the temperature varies. The DNA liquid is pushed by asheer Stress at the liquid-pipette interface, which emerges when viscous rate of the liquid changes.Preliminary experimenting results show the efficiency and convenience of this way in improving thesystem's characteristics.
文摘Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been evaluated and compared to negative expansion coefficient αtens due to tension effects. The overall thermal expansion coefficient is the sum?of?αbond?and αtens. Below 60 K, αtens is greater than αbond? yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 Å. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed.
基金supported by the Hydrogeology Survey And Comprehensive Evaluation of Large Basin and Deep Typical Southeast Coastal Region(No.12120114025101)
文摘In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.
文摘对2300 mm CVC六辊冷轧机轧制3102合金空调箔边紧问题进行分析研究,主要因为轧辊边部散热大,热凸度不均,导致边紧肋松缺陷。通过调整输入宽度,增加板型辊测量环覆盖率,调整前后张力,增大C4和A16板形目标曲线系数,有效改善边紧肋松板形缺陷,并将裂变宽度由10 mm控制到5 mm以内,提高了空调箔坯料成品率。