期刊文献+
共找到7,011篇文章
< 1 2 250 >
每页显示 20 50 100
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
1
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Design,progress and challenges of 3D carbon-based thermally conductive networks
2
作者 JING Yuan LIU Han-qing +2 位作者 ZHOU Feng DAI Fang-na WU Zhong-shuai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期844-871,共28页
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a... The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed. 展开更多
关键词 Carbon material 3D network GRAPHENE thermal conductivity Heat transfer
下载PDF
Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
3
作者 孙宗利 康艳霜 康艳梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期594-603,共10页
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean... Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions. 展开更多
关键词 thermal conductivity nano-fluidic films density functional theory
下载PDF
MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments
4
作者 Ziyuan Han Yutao Niu +11 位作者 Xuetao Shi Duo Pan Hu Liu Hua Qiu Weihua Chen Ben Bin Xu Zeinhom MEl-Bahy Hua Hou Eman Ramadan Elsharkawy Mohammed AAmin Chuntai Liu Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期82-98,共17页
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae... A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future. 展开更多
关键词 SiO_(2)nanofiber membranes MXene@c-MWCNT Composite film thermal insulation Electromagnetic interference shielding
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
5
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition:application of the clique polynomial method and physics-informed neural networks
6
作者 K.CHANDAN K.KARTHIK +3 位作者 K.V.NAGARAJA B.C.PRASANNAKUMARA R.S.VARUN KUMAR T.MUHAMMAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1613-1632,共20页
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa... The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem. 展开更多
关键词 heat transfer FIN porous fin local thermal non-equilibrium(LTNE)model physics-informed neural network(PINN)
下载PDF
Analysis of rotor eddy current loss and thermal deformation of magnetic liquid double suspension bearing
7
作者 LIU Hongmei YANG Guang +3 位作者 SUN Yanan SUN Jian WANG Zhe ZHAO Jianhua 《High Technology Letters》 EI CAS 2024年第3期322-332,共11页
Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force... Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force,the hydrostatic supporting effect is increased,and the real-time coupling of magnetic and liquid supporting can be realized.However,due to the high rotation speed,the rotor part produces eddy current loss,resulting in a large temperature rise and large ther-mal deformation,which makes the oil film thickness deviate from the initial design.The support and bearing characteristics are seriously affected.Therefore,this paper intends to explore the internal effects of eddy current loss of the rotor on the temperature rise and thermal deformation of MLDSB.Firstly,the 2D magnetic flow coupling mathematical model of MLDSB is established,and the eddy current loss distribution characteristics of the rotor are numerically simulated by Maxwell software.Secondly,the internal influence of mapping relationship of structural operating parameters such as input current,coil turns and rotor speed on rotor eddy current loss is revealed,and the changing trend of rotor eddy current loss under different design parameters is explored.Thirdly,the eddy cur-rent loss is loaded into the heat transfer finite element calculation model as a heat source,and the temperature rise of the rotor and its thermal deformation are simulated and analyzed,and the influ-ence of eddy current loss on rotor temperature rise and thermal deformation is revealed.Finally,the pressure-flow curve and the distribution law of the internal flow field are tested by the particle image velocimetry(PIV)system.The results show that eddy current loss increases linearly with the in-crease of coil current,coil turns and rotor speed.The effect of rotational speed on eddy current loss is much higher than that of coil current and coil turns.The maximum temperature rise,minimum temperature rise and maximum thermal deformation of the rotor increase with the increase of eddy current loss.The test results of flow-pressure and internal trace curves are basically consistent with the theoretical simulation,which effectively verifies the correctness of the theoretical simulation.The research results can provide theoretical basis for the design and safe and stable operation of magnetic fluid double suspension bearings. 展开更多
关键词 magnetic-liquid double suspension bearing(MLDSB) oil film thickness cur-rent loss thermal deformation particle image velocimetry(PIV)test
下载PDF
Functional Materials and Innovative Strategies for Wearable Thermal Management Applications 被引量:4
8
作者 Yeongju Jung Minwoo Kim +3 位作者 Taegyeom Kim Jiyong Ahn Jinwoo Lee Seung Hwan Ko 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期562-603,共42页
Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies a... Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body,employing diverse materials and systematic approaches to attaining thermal homeostasis.This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables,particularly emphasizing the strategic methodology to regulate body temperature.There exist several methods to promote personal thermal management in a wearable form.For instance,we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface.Thus,we classify many studies into two branches,passive and active thermal management modes,which are further subdivided into specific strategies.Apart from discussing the strategies and their mechanisms,we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries. 展开更多
关键词 thermal management Passive heat transfer Active heat transfer Wearable materials Wearable device
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
9
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator 被引量:1
10
作者 Chanil Park Woohwa Lee +4 位作者 Choyeon Park Sungmin Park Jaeho Lee Yong Seok Kim Youngjae Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期496-501,共6页
Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under d... Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under direct sunlight,PDRC materials are designed to reduce their absorption of solar energy and to enhance their long-wavelength infrared(LWIR) emissivity.In recent years,many photonic structures and polymer composites have been studied to improve the cooling system of buildings.However,in cold weather(i.e. during winter in cold climates),buildings need to be kept warm rather than cooled due to heat loss.To overcome this limitation,temperature-responsive radiative cooling is a promising alternative.In the present study,adaptive radiative cooling(ARC) film fabricated from a polydimethylsiloxane/hollow SiO_(2) microsphere/thermochromic pigment composite was investigated.We found that the ARC film absorbed solar radiation under cold conditions while exhibiting radiative cooling at ambient temperatures above 40℃.Thus,in outdoor experiments,the ARC film achieved sub-ambient temperatures and had a theoretical cooling power of 63.2 W/m~2 in hot weather.We also demonstrated that radiative cooling with an energy harvesting system could be used to improve the energy management of buildings,with the thermoelectric module continuously generating output power using the ARC film.Therefore,we believe that our proposed ARC film can be employed for efficient thermal management of buildings and all-season energy harvesting in the near future. 展开更多
关键词 thermal management Daytime radiative cooling Temperature-adaptive film Thermoelectric device Energy harvesting
下载PDF
Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity 被引量:1
11
作者 Weiwei Du Jing Tu +4 位作者 Mingjun Qiu Shangyu Zhou Yingwu Luo Wee-Liat Ong Junjie Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期216-228,共13页
Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applicat... Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applications on substrate materials with low melting points.We report a new synthesis route for PDC coatings using initiated chemical vapor deposited poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane)(pV_3D_3) as the precurs or.We investigated the changes in siloxane moieties and the network topology,and proposed a three-stage mechanism for the thermal annealing process.The rise of the connectivity number for the structures obtained at increased annealing temperatures was found with strong correlation to the enhanced mechanical properties and thermal conductivity.Our PDC films obtained via annealing at 850℃ exhibit at least 14.6% higher hardness than prior reports for PDCs synthesized below 1100℃.Furthermore,thermal conductivity up to 1.02 W(mK)^(-1) was achieved at the annealing temperature as low as 700℃,which is on the same order of magnitude as PDCs obtained above 1100℃.Using minimum thermal conductivity models,we found that the thermal transport is dominated by diffusons in the films below the percolation of rigidity,while ultra-short mean-free path phonons contribute to the thermal conductivity of the films above the percolation threshold.The findings of this work provide new insights for the development of wear-resistant and thermally conductive PDC thin films for durable protection coatings. 展开更多
关键词 polymer-derived ceramics vapor–phase deposition mechanical properties thermal conductivity thin films
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing 被引量:1
12
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
下载PDF
Experimental investigation on the effective thermal conductivities of different hydrate-bearing sediments
13
作者 Xingxun Li Rucheng Wei +4 位作者 Qingping Li Weixin Pang Qi Fan Guangjin Chen Changyu Sun 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2479-2487,共9页
The natural gas hydrate has been regarded as an important future green energy.Significant progress on the hydrate exploitation has been made,but some challenges are still remaining.In order to enhance the hydrate expl... The natural gas hydrate has been regarded as an important future green energy.Significant progress on the hydrate exploitation has been made,but some challenges are still remaining.In order to enhance the hydrate exploitation efficiency,a significant understanding of the effective thermal conductivity(ETC)of the hydrate-bearing sediment has become essential,since it directly controls the heat and mass transfer behaviors,and thereby determines the stability of hydrate reservoir and production rate.In this study,the effective thermal conductivities of various hydrate-bearing sediments were in-situ measured and studied.The impacts of temperature,particle size and type of sediment were investigated.The effective thermal conductivities of the quartz sand sediments before and after hydrate formation were in-situ measured.The results show the weak negative correlation of effective thermal conductivity of the quartz sand sediment on the temperature before and after the hydrate formation.The effective thermal conductivity of the hydrate-bearing sediment decreases with the increase of particle size of the sediment.The dominant effect of the type of porous medium on the characteristics of the effective thermal conductivity of hydrate-bearing sediment was highlighted.The results indicate that both the effective thermal conductivities of hydrate-bearing quartz sand sediment and hydrate-bearing silicon carbide sediment are weakly negatively correlated with temperature,but the effective thermal conductivity of hydrate-bearing clay sediment is weakly positively dependent on the temperature.In addition,the values of the effective thermal conductivities of various hydrate-bearing sediments are in the order of hydrate-bearing silicon carbide sediment>hydrate-bearing quartz sand sediment>hydrate-bearing clay sediment.These findings could suggest that the intrinsic thermal conductivity of porous medium could control the characteristics of effective thermal conductivity of hydrate-bearing sediment. 展开更多
关键词 HYDRATE thermal conductivity SEDIMENT Heat transfer In-situ measurement
下载PDF
Thermal conductive proppant with self-suspension ability
14
作者 Guo-Qing Xu Xiu-Ping Lan +5 位作者 Si-Si hao Kai-Yi Hu Si-Meng Qi Li-Dong Geng Quan Xu Yang Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1742-1749,共8页
The in situ mining technology is applied to the exploitation of medium-and low-maturity shale oil,which can use heaters to warm up the oil shale formations and pyrolyze the kerogen.Due to the low thermal conductivity ... The in situ mining technology is applied to the exploitation of medium-and low-maturity shale oil,which can use heaters to warm up the oil shale formations and pyrolyze the kerogen.Due to the low thermal conductivity of oil shale,electric heaters need extra equipment to improve heat transfer efficiency.In this study,a thermally conductive proppant is fabricated by coating epoxy-resin and graphite on ceramic proppants for the first time,which could support the fracturing crack and transfer heat.The thermal conduction property of epoxy-resin and graphite coated proppants(EGPs)is 245%higher than that of uncoated proppants,which can transfer more heat to the oil shale formation and accelerate the conversion of kerogen.The adhesive property of EGPs is improved by 47.9%under the load force of 1500 nN,which prolongs the time for the fracture to close.In summary,this novel proppant is expected to assist in-situ mining technology in the production of medium and low-maturity shale oil. 展开更多
关键词 Exploitation of shaleoil In situ mining Technology thermally conductive proppant Heat transfer
下载PDF
The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO_(2) thin film
15
作者 张宇 王昊哲 +5 位作者 何涛 李妍 郭颖 石建军 徐雨 张菁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期72-81,共10页
The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)fil... The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region. 展开更多
关键词 black TiO_(2)thin film atmospheric pressure plasma thermal treatment visible light response HYDROGENATION
下载PDF
Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler
16
作者 Tiezhu Sun Huan Sun +2 位作者 Tingzheng Tang Yongcheng Yan Peixuan Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2519-2531,共13页
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need... The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)). 展开更多
关键词 Tubular indirect evaporative cooler integrated convection heat transfer coefficient evaporative cooling thermal engineering calculation energy saving
下载PDF
Thermal-induced interfacial behavior of a thin one-dimensional hexagonal quasicrystal film
17
作者 Huayang DANG Dongpei QI +2 位作者 Minghao ZHAO Cuiying FAN C.S.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期841-856,共16页
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte... In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs. 展开更多
关键词 one-dimensional(1D)hexagonal quasicrystal(QC)film stress intensity factor(SIF) thermal variation Chebyshev polynomial interfacial behavior
下载PDF
基于自产热和外传热的锂离子电池热学模型参数辨识方法 被引量:1
18
作者 孙丙香 宋东林 +2 位作者 阮海军 张维戈 郑凯元 《电工技术学报》 EI CSCD 北大核心 2024年第1期278-288,共11页
锂离子电池热学模型参数(热容和热阻)的准确辨识对电池热电耦合建模及状态参数估计至关重要。然而传统测量方法成本高且测试周期长,如何利用充放电工况结合产热和传热机理研究快速热参数辨识方法具有重要意义。以8A×h软包锂离子电... 锂离子电池热学模型参数(热容和热阻)的准确辨识对电池热电耦合建模及状态参数估计至关重要。然而传统测量方法成本高且测试周期长,如何利用充放电工况结合产热和传热机理研究快速热参数辨识方法具有重要意义。以8A×h软包锂离子电池为研究对象,建立分布式热路模型;设计双向脉冲工况实验,采用自适应粒子群算法(APSO)进行辨识;同时采用其他工况进行验证,实验和仿真温度误差小于0.1℃。另外,将热容和热阻转换为比热容和导热系数,并与其他文献中同类电池的参数进行比对,量级接近。研究结果表明,该方法可以有效解决层叠式软包锂离子电池热学模型参数辨识难的问题,且简便易行、成本低。 展开更多
关键词 层叠式软包 锂离子电池 分布式热路模型 热容和热阻 自产热和外传热
下载PDF
水平管降膜换热器性能规律研究进展 被引量:1
19
作者 王乃继 朱承磊 李美军 《科学技术与工程》 北大核心 2024年第3期879-896,共18页
水平管降膜换热器具有热质传递效率高、阻力小、结构简单等优点,被广泛应用于化工等传统领域及能源利用的节能减排领域。降膜换热器内部发生复杂的流动及传热传质相互耦合过程。介绍了实验及模拟研究手段的进展,综述了不同操作参数(气... 水平管降膜换热器具有热质传递效率高、阻力小、结构简单等优点,被广泛应用于化工等传统领域及能源利用的节能减排领域。降膜换热器内部发生复杂的流动及传热传质相互耦合过程。介绍了实验及模拟研究手段的进展,综述了不同操作参数(气体温度、流向及流量,溶液流量、温度及浓度,内部媒介流量及温度等)与结构参数(管径、管间距等)对水平管降膜管间流型、液膜厚度与润湿性等流动特性的影响规律,以及对蒸发传热特性、吸收传热传质特性等换热器性能的影响规律,包括整体性能和局部微细特征,为水平管降膜换热器的性能优化提供理论支撑。指出在不同气流特征以及多因素相互作用下多维度的局部流动与传热传质性能的耦合影响规律以及强化换热手段会是水平管降膜换热器未来研究的重点方向。 展开更多
关键词 水平管降膜 管间流型 液膜厚度 润湿性 传热传质
下载PDF
基于六水氯化钙的单相变材料热二极管的实验研究
20
作者 杨旭 李静 +5 位作者 毛宇 陶可爱 孙宽 陈珊珊 周永利 郑玉杰 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第5期334-343,共10页
基于相反传热方向上相变程度不同引起的传热形式和系数差异设计的相变材料热二极管被认为是有潜力的热管理器件.然而多种材料的使用或仅依靠数值模拟的研究使其结构复杂或理想化,降低了其实际应用的可能性.因此,本文结合材料固液相变和... 基于相反传热方向上相变程度不同引起的传热形式和系数差异设计的相变材料热二极管被认为是有潜力的热管理器件.然而多种材料的使用或仅依靠数值模拟的研究使其结构复杂或理想化,降低了其实际应用的可能性.因此,本文结合材料固液相变和自然对流过程的传热形式和传热系数变化,提出了一个仅含有CaCl_(2)·6H_(2)O单相变材料的简单热二极管结构,并制备了相应的器件,搭建了稳态热通量测试系统用于实验研究,其测量结果与文献记载值相近,具有良好的准确度,实验研究了冷热端温差和正反传热方向对热二极管热整流效果的影响规律.结果表明:热二极管的热通量随冷热源温差的减小而降低,正向和反向分别沿逆重力和重力方向时,热整流比最高可达1.58,最佳冷源温度范围为20-25℃,接近室温,所提出的相变材料热二极管结构在建筑节能和热管理等方面具有一定的应用潜力. 展开更多
关键词 相变材料 热二极管 传热形式 传热系数
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部