Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon fiel...Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.展开更多
For the density operator(mixed state) describing squeezed chaotic light(SCL) we search for its thermal vacuum state(a pure state) in the real-fictitious space. Using the method of integration within ordered prod...For the density operator(mixed state) describing squeezed chaotic light(SCL) we search for its thermal vacuum state(a pure state) in the real-fictitious space. Using the method of integration within ordered product(IWOP) of operators we find that it is a kind of one- and two-mode combinatorial squeezed state. Its application in evaluating the quantum fluctuation of photon number reveals: the stronger the squeezing is, the larger a fluctuation appears. The second-order degree of coherence of SCL is also deduced which shows that SCL is classic. The new thermal vacuum state also helps to derive the Wigner function of SCL.展开更多
The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the method of damped harmonic oscillator quantization. It is shown that the quantum fluctuations of voltage and current of each loop are r...The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the method of damped harmonic oscillator quantization. It is shown that the quantum fluctuations of voltage and current of each loop are related to not only the equivalent circuit inherent parameter and squeezing parameter, but also the temperature, and decay according to exponent along with time in the thermal vacuum state, the thermal coherent state and the thermal squeezed state.展开更多
文摘Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1117511311447202and 11574295)
文摘For the density operator(mixed state) describing squeezed chaotic light(SCL) we search for its thermal vacuum state(a pure state) in the real-fictitious space. Using the method of integration within ordered product(IWOP) of operators we find that it is a kind of one- and two-mode combinatorial squeezed state. Its application in evaluating the quantum fluctuation of photon number reveals: the stronger the squeezing is, the larger a fluctuation appears. The second-order degree of coherence of SCL is also deduced which shows that SCL is classic. The new thermal vacuum state also helps to derive the Wigner function of SCL.
基金Supported by the National Natural Science Foundation of China under Grant No 10574060 and the Natural Science Foundation of Heze University of Shandong Province under Grant No XY05WL01.
文摘The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the method of damped harmonic oscillator quantization. It is shown that the quantum fluctuations of voltage and current of each loop are related to not only the equivalent circuit inherent parameter and squeezing parameter, but also the temperature, and decay according to exponent along with time in the thermal vacuum state, the thermal coherent state and the thermal squeezed state.