The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are var...The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways,resulting in strong fluorescence/phosphorescence.It is increasingly necessary to reveal the luminescence mechanism of organic solids.Here,we briefly review how intermolecular interactions induce strong normal fluorescence,thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry,electronic structures,electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules.We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.展开更多
基金supported by the National Natural Science Foundation of China(No.21973099)。
文摘The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways,resulting in strong fluorescence/phosphorescence.It is increasingly necessary to reveal the luminescence mechanism of organic solids.Here,we briefly review how intermolecular interactions induce strong normal fluorescence,thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry,electronic structures,electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules.We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.