Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differen...Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.展开更多
This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of...This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall.展开更多
基金the financial support from the National Key Research and Development Program of China(Grant No.2021YFF0601101)。
文摘Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.
基金supported by the Natural Science Research Youth Foundation of Hebei Higher Education of China [QN2016084]the National Natural Science Foundation of China[21878066]
文摘This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall.