To ensure a reliable operation of the 2.5 MW gas turbine engine (GTE- 2.5) with the inlet gas temperature TIT = 1623 K, studies were performed over the thermal state of the nozzle guide vanes and rotor blades with the...To ensure a reliable operation of the 2.5 MW gas turbine engine (GTE- 2.5) with the inlet gas temperature TIT = 1623 K, studies were performed over the thermal state of the nozzle guide vanes and rotor blades with the temperatures, rates and flows of the working media and cooling air simulating all the potential turbine stage operating duties. The steady state and thermal-cyclic tests having been accomplished, there was no visible defect on the rotor blades and the nozzle vanes. Afterwards, they survived the endurance tests at the rated cooling. Therefore, the functionality of the shell thin-wall hybrid nozzle vanes and rotor blades under the variable operating duties of the gas turbine at the 'shock' and 'cyclic' loads of the working media temperature variations has been demonstrated.展开更多
文摘To ensure a reliable operation of the 2.5 MW gas turbine engine (GTE- 2.5) with the inlet gas temperature TIT = 1623 K, studies were performed over the thermal state of the nozzle guide vanes and rotor blades with the temperatures, rates and flows of the working media and cooling air simulating all the potential turbine stage operating duties. The steady state and thermal-cyclic tests having been accomplished, there was no visible defect on the rotor blades and the nozzle vanes. Afterwards, they survived the endurance tests at the rated cooling. Therefore, the functionality of the shell thin-wall hybrid nozzle vanes and rotor blades under the variable operating duties of the gas turbine at the 'shock' and 'cyclic' loads of the working media temperature variations has been demonstrated.