Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.