A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop p...A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.展开更多
BACKGROUND Cytomegalovirus(CMV)infections can cause significant morbidity and mortality in immunocompromised individuals.CMV targets dysfunctional lymphocytes.Chronic rituximab(RTX)therapy can cause B-lymphocyte dysfu...BACKGROUND Cytomegalovirus(CMV)infections can cause significant morbidity and mortality in immunocompromised individuals.CMV targets dysfunctional lymphocytes.Chronic rituximab(RTX)therapy can cause B-lymphocyte dysfunction,increasing CMV risk.Rarely,CMV infections present with critical illness such as septic shock.CASE SUMMARY A 64-year-old African American woman presented with generalized weakness and non-bloody watery diarrhea of 4-6 weeks duration.She did not have nausea,vomiting or,abdominal pain.She had been on monthly RTX infusions for neuromyelitis optica.She was admitted for septic shock due to pancolitis.Blood investigations suggested pancytopenia and serology detected significantly elevated CMV DNA.Valganciclovir treatment led to disease resolution.CONCLUSION This case illustrates an extremely rare case of CMV colitis associated with RTX use presenting with septic shock.High suspicion for rare opportunistic infections is imperative in individuals with long-term RTX use.展开更多
BACKGROUND Hypernatremia represents a significant electrolyte imbalance associated with numerous adverse outcomes,particularly in cases of intensive care unit(ICU)-acquired hypernatremia(IAH).Nevertheless,its relevanc...BACKGROUND Hypernatremia represents a significant electrolyte imbalance associated with numerous adverse outcomes,particularly in cases of intensive care unit(ICU)-acquired hypernatremia(IAH).Nevertheless,its relevance in patients with septic shock remains uncertain.AIM To identify independent risk factors and their predictive efficacy for IAH to improve outcomes in patients with septic shock.METHODS In the present retrospective single-center study,a cohort of 157 septic shock patients with concurrent hypernatremia in the ICU at The First Affiliated Hospital of Soochow University,between August 1,2018,and May 31,2023,were analyzed.Patients were categorized based on the timing of hypernatremia occurrence into the IAH group(n=62),the non-IAH group(n=41),and the normonatremia group(n=54).RESULTS In the present study,there was a significant association between the high serum sodium concentrations,excessive persistent inflammation,immunosuppression and catabolism syndrome and chronic critical illness,while rapid recovery had an apparent association with normonatremia.Moreover,multivariable analyses revealed the following independent risk factors for IAH:Total urinary output over the preceding three days[odds ratio(OR)=1.09;95%CI:1.02–1.17;P=0.014],enteral nutrition(EN)sodium content of 500 mg(OR=2.93;95%CI:1.13–7.60;P=0.027),and EN sodium content of 670 mg(OR=6.19;95%CI:1.75–21.98;P=0.005)were positively correlated with the development of IAH.Notably,the area under the curve for total urinary output over the preceding three days was 0.800(95%CI:0.678–0.922,P=0.001).Furthermore,maximum serum sodium levels,the duration of hypernatremia,and varying sodium correction rates were significantly associated with 28-day in-hospital mortality in septic shock patients(P<0.05).CONCLUSION The present findings illustrate that elevated serum sodium level was significantly associated with a poor prognosis in septic shock patients in the ICU.It is highly recommended that hypernatremia be considered a potentially important prognostic indicator for the outcome of septic shock.展开更多
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro...This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.展开更多
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up t...Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.展开更多
Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studi...Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.展开更多
In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 4...In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 400-850℃. Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature. Besides, they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature. OP TMF life was longer than that of IP TMF. Various damage mechanisms operating in different controlled strain ranges and phasing were discussed. A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated. The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF. Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF.展开更多
The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the def...The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.展开更多
The effects of strain ratio on thermal-mechanical cyclic stress-strain response and fatigue life in DS superalloy DZ125 have been studied by performing tests at various strain ratio experiments, under strain-controlle...The effects of strain ratio on thermal-mechanical cyclic stress-strain response and fatigue life in DS superalloy DZ125 have been studied by performing tests at various strain ratio experiments, under strain-controlled and temperature cycling from 550 to 1000℃. It is shown that thermal-mechanical cyclic stress-strain response behavior not only depend on magnitude of strain, and temperature-loading phase angle, but also strain ratio. Fatigue life at strain ratio Rε=-0.3 is longer than that of strain ratio Rε=-1.0, under in-phase thermal-mechanical loading. However, Fatigue life at strain ratio Rε=-0.3 is shorter than that of strain ratio Rε=-1.0, under out-of-phase thermal-mechanical loading. The thermal-mechanical fatigue (TMF) damage model was discussed. Results of fractography show that fatigue, creep and oxidation damage always occur during TMF. The main damage mode depends on loading wave, strain ratio and magnitude of strain.展开更多
The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the ph...The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the phase transitions during T-M cycling. The variation of stress-temperature (S-T) curves and electrical resistance-temperature (R-T) curves accompanying with T-M cycling have been measured by tensile test and electrical resistance measurements. It has been found that the polycrystalline CuZnAl alloy shows apparent morphology changes and properties variations in the first cycle during T-M cycling which is called the first cycle effect in the present work. The stable transformation procedure in the T-M cycle is: martensiteparent phase +residual acicular martensite. This residual martensite possesses the character of stress-induced martensite.展开更多
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, ther...The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearl...The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures.展开更多
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t...The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th...The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.展开更多
Streptococcal toxic shock syndrome(STSS)is an acute,life-threatening illness caused by invasive group A Streptococcus(iGAS).The initial manifestations of STSS are atypical,and may progress to shock,multiple organ dysf...Streptococcal toxic shock syndrome(STSS)is an acute,life-threatening illness caused by invasive group A Streptococcus(iGAS).The initial manifestations of STSS are atypical,and may progress to shock,multiple organ dysfunction syndrome(MODS),and disseminated intravascular coagulation(DIC)quickly.展开更多
The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The beh...The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.展开更多
Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential...Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential phase-contrast,and dark-field images of the shocked target.Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser-plasma interaction.The main sources of image noise are identified through a thorough assessment of the interferometer’s performance.The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science.In addition,we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target.展开更多
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s...The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.展开更多
基金Supported by Central Universities Fundamental Research Projects Foundation(11QG22)State Key Laboratory of Automobile Noise Vibration and Safety Projects Foundation(NVHSKL-201105)
文摘A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.
文摘BACKGROUND Cytomegalovirus(CMV)infections can cause significant morbidity and mortality in immunocompromised individuals.CMV targets dysfunctional lymphocytes.Chronic rituximab(RTX)therapy can cause B-lymphocyte dysfunction,increasing CMV risk.Rarely,CMV infections present with critical illness such as septic shock.CASE SUMMARY A 64-year-old African American woman presented with generalized weakness and non-bloody watery diarrhea of 4-6 weeks duration.She did not have nausea,vomiting or,abdominal pain.She had been on monthly RTX infusions for neuromyelitis optica.She was admitted for septic shock due to pancolitis.Blood investigations suggested pancytopenia and serology detected significantly elevated CMV DNA.Valganciclovir treatment led to disease resolution.CONCLUSION This case illustrates an extremely rare case of CMV colitis associated with RTX use presenting with septic shock.High suspicion for rare opportunistic infections is imperative in individuals with long-term RTX use.
基金Supported by The National Natural Science Foundation of China,No.82072130Key Medical Research Projects in Jiangsu Province,No.ZD2022021Suzhou Clinical Medical Center for Anesthesiology,No.Szlcyxzxj202102。
文摘BACKGROUND Hypernatremia represents a significant electrolyte imbalance associated with numerous adverse outcomes,particularly in cases of intensive care unit(ICU)-acquired hypernatremia(IAH).Nevertheless,its relevance in patients with septic shock remains uncertain.AIM To identify independent risk factors and their predictive efficacy for IAH to improve outcomes in patients with septic shock.METHODS In the present retrospective single-center study,a cohort of 157 septic shock patients with concurrent hypernatremia in the ICU at The First Affiliated Hospital of Soochow University,between August 1,2018,and May 31,2023,were analyzed.Patients were categorized based on the timing of hypernatremia occurrence into the IAH group(n=62),the non-IAH group(n=41),and the normonatremia group(n=54).RESULTS In the present study,there was a significant association between the high serum sodium concentrations,excessive persistent inflammation,immunosuppression and catabolism syndrome and chronic critical illness,while rapid recovery had an apparent association with normonatremia.Moreover,multivariable analyses revealed the following independent risk factors for IAH:Total urinary output over the preceding three days[odds ratio(OR)=1.09;95%CI:1.02–1.17;P=0.014],enteral nutrition(EN)sodium content of 500 mg(OR=2.93;95%CI:1.13–7.60;P=0.027),and EN sodium content of 670 mg(OR=6.19;95%CI:1.75–21.98;P=0.005)were positively correlated with the development of IAH.Notably,the area under the curve for total urinary output over the preceding three days was 0.800(95%CI:0.678–0.922,P=0.001).Furthermore,maximum serum sodium levels,the duration of hypernatremia,and varying sodium correction rates were significantly associated with 28-day in-hospital mortality in septic shock patients(P<0.05).CONCLUSION The present findings illustrate that elevated serum sodium level was significantly associated with a poor prognosis in septic shock patients in the ICU.It is highly recommended that hypernatremia be considered a potentially important prognostic indicator for the outcome of septic shock.
基金The National Natural Science Foundation of China(No.10962008,51061015)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.
基金Project supported by the Science Fund for Distinguished Young Scholars of Heilongjiang Province, ChinaProject supported by the Program for Excellent Team in Harbin Institute of Technology
文摘Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.
基金supported by a Collaborative Research and Development (CRD) Grants of The National Science and Engineering Research Council (NSERC) of Canada (CRD 350634-07 and CRDPJ 403054-10)
文摘Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.
文摘In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 400-850℃. Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature. Besides, they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature. OP TMF life was longer than that of IP TMF. Various damage mechanisms operating in different controlled strain ranges and phasing were discussed. A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated. The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF. Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF.
基金[This work was financially supported by a research grant from the Hong Kong Polytechnic University (No.G-V694).]
文摘The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.
文摘The effects of strain ratio on thermal-mechanical cyclic stress-strain response and fatigue life in DS superalloy DZ125 have been studied by performing tests at various strain ratio experiments, under strain-controlled and temperature cycling from 550 to 1000℃. It is shown that thermal-mechanical cyclic stress-strain response behavior not only depend on magnitude of strain, and temperature-loading phase angle, but also strain ratio. Fatigue life at strain ratio Rε=-0.3 is longer than that of strain ratio Rε=-1.0, under in-phase thermal-mechanical loading. However, Fatigue life at strain ratio Rε=-0.3 is shorter than that of strain ratio Rε=-1.0, under out-of-phase thermal-mechanical loading. The thermal-mechanical fatigue (TMF) damage model was discussed. Results of fractography show that fatigue, creep and oxidation damage always occur during TMF. The main damage mode depends on loading wave, strain ratio and magnitude of strain.
文摘The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the phase transitions during T-M cycling. The variation of stress-temperature (S-T) curves and electrical resistance-temperature (R-T) curves accompanying with T-M cycling have been measured by tensile test and electrical resistance measurements. It has been found that the polycrystalline CuZnAl alloy shows apparent morphology changes and properties variations in the first cycle during T-M cycling which is called the first cycle effect in the present work. The stable transformation procedure in the T-M cycle is: martensiteparent phase +residual acicular martensite. This residual martensite possesses the character of stress-induced martensite.
基金Supported by National Natural Science Foundation of China(Grant No.52175377)Chongqing Municipal Science Foundation(Grant No.CSTB2022NSCQ-LZX0080)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.2023CDJXY-026 and 2023CDJXY-021)National Science and Technology Major Project(Grant No.2017-VII-0002-0095).
文摘The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the National Natural Science Foundation of China (No.10872220)Japan Society for the Promotion of Science (No.L08538)
文摘The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures.
基金funding support from the Natural Science Foundation of Sichuan,China(Grant No.2022NSFSC1227)the National Natural Science Foundation of China(Grant Nos.U1762216 and 51574270).
文摘The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
文摘The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.
基金Zhejiang Province Health Innovative Talent Project(A0466)Key Projects of the Science and Technology Co-construction by National Administration of Traditional Chinese Medicine and Zhejiang Provincial Administration of Traditional Chinese Medicine(GZY-ZJ-KJ-23082).
文摘Streptococcal toxic shock syndrome(STSS)is an acute,life-threatening illness caused by invasive group A Streptococcus(iGAS).The initial manifestations of STSS are atypical,and may progress to shock,multiple organ dysfunction syndrome(MODS),and disseminated intravascular coagulation(DIC)quickly.
文摘The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.
基金funded by the Deutsche Forschungsgemeinschaft(DFG)under Grant No.452935060(“Einzelschuss Rontgen-Phasenkonstrast Abbildung von dichten Plasmen,”https://gepris.dfg.de/gepris/projekt/452935060)supported by Laserlab-Europe with GrantNo.PID20536supported by the Alexander von Humboldt Foundation.
文摘Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential phase-contrast,and dark-field images of the shocked target.Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser-plasma interaction.The main sources of image noise are identified through a thorough assessment of the interferometer’s performance.The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science.In addition,we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target.
基金the National Natural Science Foundation of China(Nos.11988102,92052201,11825204,12032016,12372220,and 12372219)。
文摘The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.