期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution
1
作者 Zhiming Li Xinyu Li +5 位作者 Haiqing Ma Chenliang Ye Hongan Yu Long Nie Meng Zheng Jin Wang 《Nano Research》 SCIE EI CSCD 2024年第6期5261-5269,共9页
Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded.Construction of strong metal-support connection is beneficial t... Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded.Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts.Here we employed highly defective N-doped carbon nanotubes(d-N-CNT)as the support to achieve uniform and firm anchoring of Ru clusters(~1.9 nm)via a thermal-shock strategy.The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction(HER)in alkaline media and requires an overpotential(ƞ)of 12 mV at 10 mA·cm^(−2)and 116 mV at 200 mA·cm^(−2)with a Ru loading of 0.025 mg·cm^(−2).Impressively,Ru/d-N-CNT presents robust stability for HER at both low current density(stable for at least 1000 h at 10 mA·cm^(−2))and the industrial level of current density(stable for at least 100 h at 1000 mA·cm^(−2)),remarkably outperforming commercial Pt/C and Ru/C.The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal-support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters.Meanwhile,the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process,which also played an important role in stabilizing the HER performance especially at large current density. 展开更多
关键词 thermal-shock method hydrogen evolution reaction large-current-density Ru cluster
原文传递
PROPERTIES OF W/Cu FGMs CONTAINING 1%TiC OR 1%La_2O_3 PREPARED USING GSUHP
2
作者 K. Zhang W.P. Shen C.C. Ge 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第1期59-64,共6页
W/ Cu functionally gradient materials (FGMs) containing 1% La2O3 and 1% TiC were prepared using graded sintering under tdtra-high pressure (GSUHP). The specimens have been found to exhibit low porosity (11.57% an... W/ Cu functionally gradient materials (FGMs) containing 1% La2O3 and 1% TiC were prepared using graded sintering under tdtra-high pressure (GSUHP). The specimens have been found to exhibit low porosity (11.57% and 11.35%, respectively). Shearing strength of the specimens between layers is good. Moreover, the specimens have still demonstrated good performance in testing thermal-shock resistance. When power density of laser is 200MWm^-2, the specimens have been tested for thermal-shock resistance (1000 times); the specimens that contained 1%La2O3 were not subjected to damage, whereas those that contained 1%TiC began to crack. Finally, effect of additives on thermal-shock resistance was also preliminarily discussed. 展开更多
关键词 W/Cu FGMs (functionally gradient materials) GSUHP (graded sintering under ultra-high pressure) shearing strength thermal-shock resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部