期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NUMERICAL ANALYSIS OF NONSTATIONARY THERMISTOR PROBLEM 被引量:1
1
作者 Yue Xingye(Suzhou University, Suzhou, Jiangsu, China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期213-223,共11页
The thermistor problem is a coupled system of nonlinear PDEs which consists of the heat equation with the Joule heating as a source, and the current conservation equation with temperature dependent electrical conducti... The thermistor problem is a coupled system of nonlinear PDEs which consists of the heat equation with the Joule heating as a source, and the current conservation equation with temperature dependent electrical conductivity. In this paper we make a numerical analysis of the nonsteady thermistor problem. L(infinity)(OMEGA), W1,infinity(OMEGA) stability and error bounds for a piecewise linear finite element approximation are given. 展开更多
关键词 QT NUMERICAL ANALYSIS OF NONSTATIONARY thermistor problem MATH
原文传递
热敏电阻在航天器上的应用分析 被引量:16
2
作者 张加迅 王虹 孙家林 《中国空间科学技术》 EI CSCD 北大核心 2004年第6期54-59,共6页
文章首先阐述了航天器对于测温传感器的需求 ,并对目前航天器在地面试验和飞行试验中 ,所采用的主要测温传感器的特点进行了概述。然后 ,以目前航天器在轨运行中应用最为广泛的热敏电阻为研究对象 ,介绍了它在航天器中的应用方案 ,以及... 文章首先阐述了航天器对于测温传感器的需求 ,并对目前航天器在地面试验和飞行试验中 ,所采用的主要测温传感器的特点进行了概述。然后 ,以目前航天器在轨运行中应用最为广泛的热敏电阻为研究对象 ,介绍了它在航天器中的应用方案 ,以及为保证其测温精度、工艺可实施性和可靠性所应注意的问题。 展开更多
关键词 航天器 在轨运行 地面试验 飞行试验 可实施性 需求 应用分析 问题 保证 研究对象
下载PDF
混合边界条件下电热问题的数值分析
3
作者 张建松 羊丹平 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第8期1-8,共8页
提出了数值模拟非线性耦合电热问题的Galerkin有限元方法.建立了此类问题弱解的存在性和惟一性.运用固定点算法,引入标准Garlikin有限元逼近格式.分析了此格式解的收敛性,并给出了相应的误差估计.
关键词 电热问题 混合边界 有限元逼近 收敛性分析
下载PDF
Regularity Results for a Nonlinear Elliptic-Parabolic System with Oscillating Coefficients
4
作者 Xiangsheng Xu 《Analysis in Theory and Applications》 CSCD 2021年第4期541-556,共16页
In this paper we study the initial boundary value problem for the system div(σ(u)∇φ)=0,u_(t)−∆u=σ(u)|∇φ|2.This problem is known as the thermistor problem which models the electrical heating of conductors.Our assum... In this paper we study the initial boundary value problem for the system div(σ(u)∇φ)=0,u_(t)−∆u=σ(u)|∇φ|2.This problem is known as the thermistor problem which models the electrical heating of conductors.Our assumptions onσ(u)leave open the possibility that lim inf_(u→∞)σ(u)=0,while lim sup_(u→∞)σ(u)is large.This means thatσ(u)can oscillate wildly between 0 and a large positive number as u→∞.Thus our degeneracy is fundamentally different from the one that is present in porous medium type of equations.We obtain a weak solution(u,ϕ)with|∇φ|,|∇u|∈L∞by first establishing a uniform upper bound for eεu for some smallε.This leads to an inequality in∇φ,from which the regularity result follows.This approach enables us to avoid first proving the Holder continuity ofφin the space variables,which would have required that the elliptic coefficientσ(u)be an A2 weight.As it is known,the latter implies that lnσ(u)is“nearly bounded”. 展开更多
关键词 Oscillating coefficients the thermistor problem quadratic nonlinearity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部