Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported ...Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported GaAsP/GaAs and InAsP/InP in thermodynamic growth.The lattice strain energy △G and thermal decomposition sensitive to growth temperature are demonstrated in the models simultaneously.△G is the function of the alloy composition,which is affected by flux ratio and growth temperature directly.The calculation results reveal that flux ratio and growth temperature mainly influence the growth process.Thermodynamic model of quaternary InGaAsP/GaAs semiconductor material is discussed also.展开更多
Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentall...Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.展开更多
The sharp luminescent peaks in Yb and Er-implanted InP,SI-InP,GaAs,and n-GaAs were observed at 77K.The peaks at 1.0 and 1.5μm come from(4f)~2F_(5/2)→~2F_(7/2)of Yb^(3+)and ~4I_(13/2)→~4I_(15/2)of Er^(3+), respectiv...The sharp luminescent peaks in Yb and Er-implanted InP,SI-InP,GaAs,and n-GaAs were observed at 77K.The peaks at 1.0 and 1.5μm come from(4f)~2F_(5/2)→~2F_(7/2)of Yb^(3+)and ~4I_(13/2)→~4I_(15/2)of Er^(3+), respectively.The optimum luminescent intensities can be obtained from Yb-implanted and Er-implanted sam- ples which were annealed at 800 and 750℃,respectively.A ccording to the analyses of PL and the rocking curve of X-ray double crystal diffraction,the best crystal structure of implanted InP layer has been obtained by an- nealing at 850℃.The interaction between Yb^(3+)and Er^(3+)in the SI-InP has been investigated for the first time. The quenching effect of Yb^(3+)and Er^(3+)with each other has been observed when the doses of Yb and Er-im- planted SI-InP are equal.展开更多
The geometrical structure of semiconductor clusters including Zn3O3 was optimized by the DFT B3LYP method. With the same basis sets, dipole moments, polarizabilities and secondorder hyperpolarizabilities have been cal...The geometrical structure of semiconductor clusters including Zn3O3 was optimized by the DFT B3LYP method. With the same basis sets, dipole moments, polarizabilities and secondorder hyperpolarizabilities have been calculated and compared with the results obtained by TDDFT B3LYP method combined with sum-over-state (SOS) formula. The calculation results indicate that the dipole moments of the ground state depend on the atom radius and electronegative differences between elements and are their balance point as well. The polarizabilities of the clusters accord with the rule of the corresponding energy transformation from ground to excited state. The results predict an increase of second-order hyperpolarizabilities with increasing the distances between atoms in the clusters as well as a decrease of the polarizabilities and second-order hyperpolarizabilities in the same serial of semiconductor clusters with increasing the dipole moments of the ground states. The changes of dipole moments in ground states are inconsistent with transition moments. Spatial structure, charge transfer and other factors play an important role in composing the transition moments.展开更多
In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found th...In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg2Si under uniaxial strain have been explored first time in this report.展开更多
Efficient light generation and amplification has long been missing on the silicon platform due to its well-known indirect bandgap nature.Driven by the size,weight,power and cost(SWaP-C)requirements,the desire to fully...Efficient light generation and amplification has long been missing on the silicon platform due to its well-known indirect bandgap nature.Driven by the size,weight,power and cost(SWaP-C)requirements,the desire to fully realize integrated silicon electronic and photonic integrated circuits has greatly pushed the effort of realizing high performance on-chip lasers and amplifiers moving forward.Several approaches have been proposed and demonstrated to address this issue.In this paper,a brief overview of recent progress of the high-performance lasers and amplifiers on Si based on different technology is presented.Representative device demonstrations,including ultra-narrow linewidthⅢ-Ⅴ/Si lasers,fully integratedⅢ-Ⅴ/Si/Si3N4 lasers,high-channel count mode locked quantum dot(QD)lasers,and high gain QD amplifiers will be covered.展开更多
Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and...Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and optical transmission spectra. Results showed that p type conduction was observed in Li doped ZnO films annealed at 500-600 ℃ and thep type ZnO films possessed a good crystalline with c-axis orientation, dense surface, and average transmission of about 85% in visible spectral region.展开更多
In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the...In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.展开更多
CdTe is one of the leading materials for low cost,high efficiency thin-film solar cells with a nearly ideal band gap of 1.48 eV.However,its solar to electricity power conversion efficiency(PCE)is hindered by the relat...CdTe is one of the leading materials for low cost,high efficiency thin-film solar cells with a nearly ideal band gap of 1.48 eV.However,its solar to electricity power conversion efficiency(PCE)is hindered by the relatively low open circuit voltage(VOC)due to intrinsic defect related issues.Here,we propose that alloying CdTe with CdSe could possibly improve the solar cell performance by reducing the"ideal"band gap of CdTe to gain more short-circuit current from long-wavelength absorption without sacrificing much VOC.Using the hybrid functional calculation,we find that the minimum band gap of the CdTe1-xSex alloy can be reduced from 1.48 eV at x=0 to 1.39 eV at x=0.32,and most of the change come from the lowering of the conduction band minimum.We also show that the formation of the alloy can improve the p-type doping of CuCdimpurity based on the reduced effective formation energy and nearly constant effective transition energy level,thus possibly enhance VOC,thus PCE.展开更多
The epitaxial techniques are the most important processes in the production of semiconductor materials and optoelectronic devices. Liquid phase epitaxy (LPE) and metal organic vapor phase epitaxy (MOVPE) particularly...The epitaxial techniques are the most important processes in the production of semiconductor materials and optoelectronic devices. Liquid phase epitaxy (LPE) and metal organic vapor phase epitaxy (MOVPE) particularly have many applications.The process characteristics and crystalline properties of both LPE and MOVPE techniques were introduced briefly, the compositional space suitable for LPE and MOVPE growth was discussed from the view point of thermodynamic equilibrium. The analysis and comparison show that on the one hand LPE and MOVPE have some advantages and characteristics in common; on the other hand, they may overcome each other′s weaknesses and deficiencies by offering their own special features.展开更多
Multijunction solar cells are the highest efficiency photovoltaic devices yet demonstrated for both space and terrestrial applications.In recent years five-junction cells based on the direct semiconductor bonding tech...Multijunction solar cells are the highest efficiency photovoltaic devices yet demonstrated for both space and terrestrial applications.In recent years five-junction cells based on the direct semiconductor bonding technique(SBT),demonstrates space efficiencies>35%and presents application potentials.In this paper,the major challenges for fabricating SBT 5J cells and their appropriate strategies involving structure tunning,band engineering and material tailoring are stated,and 4-cm235.4%(AM0,one sun)5J SBT cells are presented.Further efforts on detailed optical managements are required to improve the current generating and matching in subcells,to achieve efficiencies 36%-37%,or above.展开更多
An explicit expression of reflection magnetic circular dichroism (RMCD) has been derived, taking into account the interference effect that arises from multiple internal reflections in an air/Ga1-xMnxAs/GaAs dielectr...An explicit expression of reflection magnetic circular dichroism (RMCD) has been derived, taking into account the interference effect that arises from multiple internal reflections in an air/Ga1-xMnxAs/GaAs dielectric layered system. It unambiguously shows that the RMCD signal is composed by three terms. In addition to the conventional term, which is sufficient in the absence of interference, an oscillatory term is required. Both of them are related to the imaginary part εxy of the off-diagonal element of the dielectric tensor. One also becomes aware that in this case RMCD is not actually determined only by the imaginary part εxy of the off-diagonal element of the dielectric tensor, as has been widely accepted. In fact, the real part εxy of the off-diagonal element will substantially mix into the measured RMCD results by another oscillatory cos θ form. It can even reverse the sign of RMCD, when the Gal_xMnxAs layer becomes thicker. The main aspects of these predictions were used to reasonably explain the RMCD results measured in three different types of samples. Our work will bring about a reconsideration of how to correctly explain RMCD results.展开更多
A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering an...A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AIInGaN (χmin = 1.5%) with GaN buffer layer. The channeling angular scan around an off-normal {1213} axis in the {1010} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AIInGaN. The resulting AlInGaN is subjected to an elastic strain at interracial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (^eT = 0).展开更多
Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a sing...Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity.展开更多
Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchan...Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.展开更多
基金Projects(06YFJZJC01100,08JCYBJC14800)supported by Applied Basic Study Foundation of Tianjin,ChinaProject(2006AA03Z413)supported by the Hi-tech Research and Development Program of China
文摘Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported GaAsP/GaAs and InAsP/InP in thermodynamic growth.The lattice strain energy △G and thermal decomposition sensitive to growth temperature are demonstrated in the models simultaneously.△G is the function of the alloy composition,which is affected by flux ratio and growth temperature directly.The calculation results reveal that flux ratio and growth temperature mainly influence the growth process.Thermodynamic model of quaternary InGaAsP/GaAs semiconductor material is discussed also.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(No.2022M3H4A1A04096380)and(No.2022M3H4A3A01082883)。
文摘Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.
基金Project supported by the National Natural Science Foundation of China
文摘The sharp luminescent peaks in Yb and Er-implanted InP,SI-InP,GaAs,and n-GaAs were observed at 77K.The peaks at 1.0 and 1.5μm come from(4f)~2F_(5/2)→~2F_(7/2)of Yb^(3+)and ~4I_(13/2)→~4I_(15/2)of Er^(3+), respectively.The optimum luminescent intensities can be obtained from Yb-implanted and Er-implanted sam- ples which were annealed at 800 and 750℃,respectively.A ccording to the analyses of PL and the rocking curve of X-ray double crystal diffraction,the best crystal structure of implanted InP layer has been obtained by an- nealing at 850℃.The interaction between Yb^(3+)and Er^(3+)in the SI-InP has been investigated for the first time. The quenching effect of Yb^(3+)and Er^(3+)with each other has been observed when the doses of Yb and Er-im- planted SI-InP are equal.
基金Project supported by the National Natural Science Foundation of China (No. 60176003 and 60376006)
文摘The geometrical structure of semiconductor clusters including Zn3O3 was optimized by the DFT B3LYP method. With the same basis sets, dipole moments, polarizabilities and secondorder hyperpolarizabilities have been calculated and compared with the results obtained by TDDFT B3LYP method combined with sum-over-state (SOS) formula. The calculation results indicate that the dipole moments of the ground state depend on the atom radius and electronegative differences between elements and are their balance point as well. The polarizabilities of the clusters accord with the rule of the corresponding energy transformation from ground to excited state. The results predict an increase of second-order hyperpolarizabilities with increasing the distances between atoms in the clusters as well as a decrease of the polarizabilities and second-order hyperpolarizabilities in the same serial of semiconductor clusters with increasing the dipole moments of the ground states. The changes of dipole moments in ground states are inconsistent with transition moments. Spatial structure, charge transfer and other factors play an important role in composing the transition moments.
基金Council of Scientific&Industrial Research(CSIR),India for providing fellowship.
文摘In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg2Si under uniaxial strain have been explored first time in this report.
文摘Efficient light generation and amplification has long been missing on the silicon platform due to its well-known indirect bandgap nature.Driven by the size,weight,power and cost(SWaP-C)requirements,the desire to fully realize integrated silicon electronic and photonic integrated circuits has greatly pushed the effort of realizing high performance on-chip lasers and amplifiers moving forward.Several approaches have been proposed and demonstrated to address this issue.In this paper,a brief overview of recent progress of the high-performance lasers and amplifiers on Si based on different technology is presented.Representative device demonstrations,including ultra-narrow linewidthⅢ-Ⅴ/Si lasers,fully integratedⅢ-Ⅴ/Si/Si3N4 lasers,high-channel count mode locked quantum dot(QD)lasers,and high gain QD amplifiers will be covered.
基金Funded by the Natural Science Foundation of Liaoning,China(No.201204916)Training Programme Foundation for the Talents by the Education Bureau of Liaoning Province,China(No.LJQ2013068)+1 种基金Key Program of Ministry of Education,China(No.212031)Liaoning College Creative Team(No.LT2013014)
文摘Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and optical transmission spectra. Results showed that p type conduction was observed in Li doped ZnO films annealed at 500-600 ℃ and thep type ZnO films possessed a good crystalline with c-axis orientation, dense surface, and average transmission of about 85% in visible spectral region.
基金Kulwinder Kaur thanks Council of Scientific&Industrial Research(CSIR),India for providing fellowship
文摘In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700700)the National Natural Science Foundation of China(Grant Nos.51672023,11847043,11634003,and U1530401)the Science Challenge Project(Grant Nos.TZ2016003 and TZ2018004)
文摘CdTe is one of the leading materials for low cost,high efficiency thin-film solar cells with a nearly ideal band gap of 1.48 eV.However,its solar to electricity power conversion efficiency(PCE)is hindered by the relatively low open circuit voltage(VOC)due to intrinsic defect related issues.Here,we propose that alloying CdTe with CdSe could possibly improve the solar cell performance by reducing the"ideal"band gap of CdTe to gain more short-circuit current from long-wavelength absorption without sacrificing much VOC.Using the hybrid functional calculation,we find that the minimum band gap of the CdTe1-xSex alloy can be reduced from 1.48 eV at x=0 to 1.39 eV at x=0.32,and most of the change come from the lowering of the conduction band minimum.We also show that the formation of the alloy can improve the p-type doping of CuCdimpurity based on the reduced effective formation energy and nearly constant effective transition energy level,thus possibly enhance VOC,thus PCE.
文摘The epitaxial techniques are the most important processes in the production of semiconductor materials and optoelectronic devices. Liquid phase epitaxy (LPE) and metal organic vapor phase epitaxy (MOVPE) particularly have many applications.The process characteristics and crystalline properties of both LPE and MOVPE techniques were introduced briefly, the compositional space suitable for LPE and MOVPE growth was discussed from the view point of thermodynamic equilibrium. The analysis and comparison show that on the one hand LPE and MOVPE have some advantages and characteristics in common; on the other hand, they may overcome each other′s weaknesses and deficiencies by offering their own special features.
基金supported by the National Nature Science Foundation of China(Grant No.62004126)Shanghai Rising-Star Program(Grant No.19QB1403800).
文摘Multijunction solar cells are the highest efficiency photovoltaic devices yet demonstrated for both space and terrestrial applications.In recent years five-junction cells based on the direct semiconductor bonding technique(SBT),demonstrates space efficiencies>35%and presents application potentials.In this paper,the major challenges for fabricating SBT 5J cells and their appropriate strategies involving structure tunning,band engineering and material tailoring are stated,and 4-cm235.4%(AM0,one sun)5J SBT cells are presented.Further efforts on detailed optical managements are required to improve the current generating and matching in subcells,to achieve efficiencies 36%-37%,or above.
基金supported by the National Basic Research Program of China(Grant No.2011CB932901)
文摘An explicit expression of reflection magnetic circular dichroism (RMCD) has been derived, taking into account the interference effect that arises from multiple internal reflections in an air/Ga1-xMnxAs/GaAs dielectric layered system. It unambiguously shows that the RMCD signal is composed by three terms. In addition to the conventional term, which is sufficient in the absence of interference, an oscillatory term is required. Both of them are related to the imaginary part εxy of the off-diagonal element of the dielectric tensor. One also becomes aware that in this case RMCD is not actually determined only by the imaginary part εxy of the off-diagonal element of the dielectric tensor, as has been widely accepted. In fact, the real part εxy of the off-diagonal element will substantially mix into the measured RMCD results by another oscillatory cos θ form. It can even reverse the sign of RMCD, when the Gal_xMnxAs layer becomes thicker. The main aspects of these predictions were used to reasonably explain the RMCD results measured in three different types of samples. Our work will bring about a reconsideration of how to correctly explain RMCD results.
基金Project supported by the National Natural Science Foundation of China(Grant No.10875004)the National Basic Research Program of China(Grant No.2010CB832904)
文摘A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AIInGaN (χmin = 1.5%) with GaN buffer layer. The channeling angular scan around an off-normal {1213} axis in the {1010} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AIInGaN. The resulting AlInGaN is subjected to an elastic strain at interracial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (^eT = 0).
基金Project supported by the National Natural Science Foundation of China(Grant No.11874038)the State Key Laboratory of Advanced Metallurgy Foundation in China(Grant No.KF19-03)。
文摘Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity.
基金support by the National Natural Science Foundation of China(Nos.22172075,92156024)the Fundamental Research Funds for the Central Universities in China(Nos.0210/14380174,14380273)+4 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS202107)Thousand Talents Plan of Jiangxi Province(No.jxsq2019102002)support by the National Natural Science Foundation of China(No.22033004)support from Early Career Scheme Project(No.21302821)General Research Fund Project(No.11314322)from the University Grants Committee of Hong Kong.
文摘Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.