The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen...The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.展开更多
Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.4...Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.展开更多
The coupled thermo-hydro-mechanical and chemical (THMC) processes of stress/deformation,fluid flow,temperature and geochemical reactions of the geological media,namely fractured rocks and soils,play an important role ...The coupled thermo-hydro-mechanical and chemical (THMC) processes of stress/deformation,fluid flow,temperature and geochemical reactions of the geological media,namely fractured rocks and soils,play an important role in design,construction,operation and environmental impact assessments of rock and soil engineering works such as underground nuclear waste repositories,oil/gas production and storage,geothermal energy extraction,landslides and slope stability,hydropower and water conservancy complexes,etc. This paper presents an overview of the international and Chinese experiences in numerical modeling of the coupled THMC processes for both the state-of-the-knowledge,remaining challenges and possible future prospects.展开更多
Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that r...Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that rapid solid solution and aging treatment can be effectively combined in one procedure by the strain induced during CTMP. The deformation temperature is ranging from 540* C to 300* C, the hardness increases directly before the 6th pass followed by a slight drop, the amount of precipitates increases with the holding time after deformation. Uniformly distributed and stabilized Mg2Si precipitates, as well as dislocation substructure can be observed on deformed specimens which have been subsequently held at 300℃ for 60 seconds.展开更多
A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the ...A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.展开更多
This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed usi...This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed using an optical microscope and a scanning electronic microscope. In the longitudinal section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were transformed into the fibres aligned parallel to the drawing axis;the Cr dendrites experienced breaking, flattening and rotating, lapping and merging, and homogenizing and refinement during thermo-mechanical processing. In the transverse section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were changed into the curvy ribbon like fibres;the Cr dendrites underwent breaking, flattening and rotating, folding and twisting, and irregularizing and refinement during thermo-mechanical processing.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
The microstructural changes of Fe83Si4B13 amorphous mother alloy during the heating process were investigated by Laser Scanning Confocal Microscopy (LSCM) ,and the phase transformation was determined by the Thermo-C...The microstructural changes of Fe83Si4B13 amorphous mother alloy during the heating process were investigated by Laser Scanning Confocal Microscopy (LSCM) ,and the phase transformation was determined by the Thermo-Calc calculations. The differences in the melting points measured by Differential Scanning Calorimetry (DSC) and LSCM, and those obtained by Thermo-Calc calculations were also discussed. It is found that the melting points measured by DSC and LSCM are relatively similar, whereas the onset and end of the melting temperatures calculated by Thermo-Calc software are higher than those measured by DSC and observed by LSCM.展开更多
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe...Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.展开更多
Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface mod...Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.展开更多
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-el...This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.展开更多
The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal con...The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.展开更多
Thermo-luminescence (TL) is a kind of luminescence decay measured with varying temperature. In the process of TL the decay parameter itself involves the temperature effect of traps. Thus the trap depth is inseparabl...Thermo-luminescence (TL) is a kind of luminescence decay measured with varying temperature. In the process of TL the decay parameter itself involves the temperature effect of traps. Thus the trap depth is inseparable from the decay parameter. There are two separate peaks in the TL curve of ZnS:Cu,Co if the measurement starts from liquid nitrogen temperature. In the experiment we started from zero Celsius temperature to isolate the deeper traps. We have proposed and realized three methods for simultaneous determination of trap depth and decay parameter based on the quasi-equilibrium model and experimental data. If we treat the case of kinetic order a = 1 as a = 2, the error might be as large as 100%.展开更多
The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-me...The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.展开更多
基金supported by the Hebei Provincial Natural Science Foundation of China(No.E2007000591).
文摘The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.
文摘Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.
基金Supported by the Special Funds fo Major State Basic Research Project (2002CB412708).
文摘The coupled thermo-hydro-mechanical and chemical (THMC) processes of stress/deformation,fluid flow,temperature and geochemical reactions of the geological media,namely fractured rocks and soils,play an important role in design,construction,operation and environmental impact assessments of rock and soil engineering works such as underground nuclear waste repositories,oil/gas production and storage,geothermal energy extraction,landslides and slope stability,hydropower and water conservancy complexes,etc. This paper presents an overview of the international and Chinese experiences in numerical modeling of the coupled THMC processes for both the state-of-the-knowledge,remaining challenges and possible future prospects.
文摘Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that rapid solid solution and aging treatment can be effectively combined in one procedure by the strain induced during CTMP. The deformation temperature is ranging from 540* C to 300* C, the hardness increases directly before the 6th pass followed by a slight drop, the amount of precipitates increases with the holding time after deformation. Uniformly distributed and stabilized Mg2Si precipitates, as well as dislocation substructure can be observed on deformed specimens which have been subsequently held at 300℃ for 60 seconds.
文摘A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.
文摘This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed using an optical microscope and a scanning electronic microscope. In the longitudinal section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were transformed into the fibres aligned parallel to the drawing axis;the Cr dendrites experienced breaking, flattening and rotating, lapping and merging, and homogenizing and refinement during thermo-mechanical processing. In the transverse section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were changed into the curvy ribbon like fibres;the Cr dendrites underwent breaking, flattening and rotating, folding and twisting, and irregularizing and refinement during thermo-mechanical processing.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
文摘The microstructural changes of Fe83Si4B13 amorphous mother alloy during the heating process were investigated by Laser Scanning Confocal Microscopy (LSCM) ,and the phase transformation was determined by the Thermo-Calc calculations. The differences in the melting points measured by Differential Scanning Calorimetry (DSC) and LSCM, and those obtained by Thermo-Calc calculations were also discussed. It is found that the melting points measured by DSC and LSCM are relatively similar, whereas the onset and end of the melting temperatures calculated by Thermo-Calc software are higher than those measured by DSC and observed by LSCM.
基金Funded by National Natural Science Foundation of China (No. 51004047)Scientific Research Fund of Hunan Provincial Education Department (No. 10B020)Provincial Natural Science Foundation of Hunan (No. 09jj4024)
文摘Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.
文摘Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.
文摘This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.
基金financed and supported by the German research institute "Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH"
文摘The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374001, 10434030 and 60576016), the State Key Development Program for Basic Research of China (Grant No 2003CB314707), the Excellent Doctor's Science and Technology Innovation Foundation of Beijing Jiaotong University (Grant No 48011), Russian Foundation of Basic Research (Grant Nos 04-02- 16942 and 02-02-39007).
文摘Thermo-luminescence (TL) is a kind of luminescence decay measured with varying temperature. In the process of TL the decay parameter itself involves the temperature effect of traps. Thus the trap depth is inseparable from the decay parameter. There are two separate peaks in the TL curve of ZnS:Cu,Co if the measurement starts from liquid nitrogen temperature. In the experiment we started from zero Celsius temperature to isolate the deeper traps. We have proposed and realized three methods for simultaneous determination of trap depth and decay parameter based on the quasi-equilibrium model and experimental data. If we treat the case of kinetic order a = 1 as a = 2, the error might be as large as 100%.
文摘The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.