Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/t...Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.展开更多
Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I...Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-con...Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-contact coupled problem have been listed. On this foundation, the finite element equation and definite solution condition of contact heat transfer have been given out. Based on virtual work principle and contact element technology, the finite element equation of 3D elastic contact system has been deduced under the effect of thermal stress. The pseudo load brought by contact gap have been introduced into this equation in order to reflect the contact state change. During iteration, once contact rigidity matrix is formed, it won’t change, which will make calculation reduce greatly.展开更多
No matter what the flatness of a strip is, flat or defective, at an annealing furnace entrance, the strip can not keep its original shape and a remarkable change of its shape can be seen at the annealing furnace exit....No matter what the flatness of a strip is, flat or defective, at an annealing furnace entrance, the strip can not keep its original shape and a remarkable change of its shape can be seen at the annealing furnace exit. By investigating this phenomenon at the 2030 mm continuous annealing line which belonged to Baosteel, a finite element model of thermo-mechanical buckling deformation of strips in a continuous annealing furnace were established, and the mechanism of flatness changing and the contributing factors were researched by the finite element software ANSYS.展开更多
A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process de...A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process development and die design are analyzed. A forming testshows that computed results have good agreement with experimental results. Above obtained resultscan be applied to development of multistage warm/hot forming process and die design for outer race.展开更多
Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate ...Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.展开更多
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is f...The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.展开更多
To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on t...To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using th...Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using the Piston theory.The temperature is considered uniform over the thickness of the panel.The aero-thermo-elastic model is derived in the framework of the Carrera unified formulation(CUF),therefore the matrices are expressed in a compact form using the″fundamental nuclei″.Composite and sandwich structures are considered and different boundary conditions are taken into account.The effects of the thermal load on the aeroelastic behavior are investigated.展开更多
According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the...According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.展开更多
This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial ...This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.展开更多
The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly i...The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.展开更多
A Voronoi cell dement, formulated with creep, thermal and plastic strain was applied for investigation of thermo-mechanical fatigue behavior for particulate reinforced composites. Under the in-phase fatigue loading, t...A Voronoi cell dement, formulated with creep, thermal and plastic strain was applied for investigation of thermo-mechanical fatigue behavior for particulate reinforced composites. Under the in-phase fatigue loading, the maximum of tensile deformation at the maximum given loading are larger than that at the same maximum under the out-phase fatigue. The stiffness decreases nonlinearly with the increasing of the phase angle, which results in increasing of the area of fatigue loop curve and the decrease in fatigue life. The spatially centralizing of inclusions results in decreasing of the plastic strain amplitude and the area of fatigue loop curve, which will also reduce the consumption of single-circle plastic strain energy and prolong the fatigue life.展开更多
In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced compos...In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U1764251,51775160)Fundamental Research Funds for the Central Universities of China(Grant No.DUT19LAB24)
文摘Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.
基金supported by he National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No.111005)
文摘Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
文摘Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-contact coupled problem have been listed. On this foundation, the finite element equation and definite solution condition of contact heat transfer have been given out. Based on virtual work principle and contact element technology, the finite element equation of 3D elastic contact system has been deduced under the effect of thermal stress. The pseudo load brought by contact gap have been introduced into this equation in order to reflect the contact state change. During iteration, once contact rigidity matrix is formed, it won’t change, which will make calculation reduce greatly.
基金This work was financially supported by the National Natural Science Foundation of China (No.50675021)
文摘No matter what the flatness of a strip is, flat or defective, at an annealing furnace entrance, the strip can not keep its original shape and a remarkable change of its shape can be seen at the annealing furnace exit. By investigating this phenomenon at the 2030 mm continuous annealing line which belonged to Baosteel, a finite element model of thermo-mechanical buckling deformation of strips in a continuous annealing furnace were established, and the mechanism of flatness changing and the contributing factors were researched by the finite element software ANSYS.
文摘A multistage warm/hot forming is simulated for the cross grove outer race ofconstant velocity joint, using a thermo-mechanical coupled rigid viscoplastic finite element method,and specially some problem for process development and die design are analyzed. A forming testshows that computed results have good agreement with experimental results. Above obtained resultscan be applied to development of multistage warm/hot forming process and die design for outer race.
文摘Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.
文摘The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.
基金supported in part by the Scientific Research Foundation for the 973 Program of China (No. 2012CB026104)Research Fund of Young Teachers for the Doctoral Program of Higher Education of China (No. 20110009120020)the Fundamental Research Funds of the Central Universities (No. 2013JBM059)
文摘To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
文摘Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using the Piston theory.The temperature is considered uniform over the thickness of the panel.The aero-thermo-elastic model is derived in the framework of the Carrera unified formulation(CUF),therefore the matrices are expressed in a compact form using the″fundamental nuclei″.Composite and sandwich structures are considered and different boundary conditions are taken into account.The effects of the thermal load on the aeroelastic behavior are investigated.
基金The project supported by National Natural Science Foundation of China
文摘According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.
基金supported by the National Natural Science Foundation of China (10872050, 11172055)the Fundamental Research Funds for the Centred Universities (DUT11ZD(G)01)
文摘This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.
基金Supported by the National Basic Research Program of China("973"Program)(613002)
文摘The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.
基金support by the Special Funds for the State Basu Research Project of China(G19990650)the France-Chma Advance Research Program(MX-01-03)the National Natural Science Foundation of China(No.50371042)
文摘A Voronoi cell dement, formulated with creep, thermal and plastic strain was applied for investigation of thermo-mechanical fatigue behavior for particulate reinforced composites. Under the in-phase fatigue loading, the maximum of tensile deformation at the maximum given loading are larger than that at the same maximum under the out-phase fatigue. The stiffness decreases nonlinearly with the increasing of the phase angle, which results in increasing of the area of fatigue loop curve and the decrease in fatigue life. The spatially centralizing of inclusions results in decreasing of the plastic strain amplitude and the area of fatigue loop curve, which will also reduce the consumption of single-circle plastic strain energy and prolong the fatigue life.
基金The project supported by the Special Funds for the National Major Fundamental Research Projects(2004CB619304)the National Natural Science Foundation of China(10276020 and 50371042)the Key Grant Project of Chinese Ministry of Education(0306)
文摘In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.