期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly 被引量:3
1
作者 Fuji Sakai Zhong-Wei Ji +2 位作者 Jiang-Hua Liu Guo-Song Chen Ming Jiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第7期568-572,共5页
A novel supramolecular graft copolymer (SGP) composed of viologen-containing copolymer (P(DMA-co- diEV)) as the main chain and Np ended PNIPAM (Np-PNIPAm) as the grafts is prepared (DMA: N,N- dimethylacryami... A novel supramolecular graft copolymer (SGP) composed of viologen-containing copolymer (P(DMA-co- diEV)) as the main chain and Np ended PNIPAM (Np-PNIPAm) as the grafts is prepared (DMA: N,N- dimethylacryamide, diEV: ethylviologen dimer, Np: naphthalene, PNIPAM: poly(N-isopropylacrylamide)). The grafting is based on the triple complexation among a host of cucurbit[8]uril (CB[8]) and two guests of diEV and Np, which is characterized by UV-vis spectra and ITC. Temperature sensitive property of PNIPAm moiety allows SGP to self-assemble into non-covalently connected micelle (NCCM) at high temperature. The micelles are sensitive to reducing agents, for example Na2S203, which breaks the current inclusion complex pair and induces aggregation. 展开更多
关键词 Macromolecular self-assembly Inclusion complexation thermo responsive polymer uril
原文传递
Recent progress on smart hydrogels for biomedicine and bioelectronics
2
作者 Fa Zou Jiefang Xu +2 位作者 Le Yuan Qinyong Zhang Lili Jiang 《Biosurface and Biotribology》 EI 2022年第3期212-224,共13页
The increasing development of biomedicine and bioelectronics has highlighted the requirement for smart materials that can respond to changes in physical and chemical properties under external environments,such as magn... The increasing development of biomedicine and bioelectronics has highlighted the requirement for smart materials that can respond to changes in physical and chemical properties under external environments,such as magnetic fields,electric fields,and temperature.Accordingly,hydrogels have been widely evaluated as promising candidates for smart materials owing to their intriguing structures comprising a cross‐linked network of polymer chains with interstitial spaces filled with solvent water.This feature endows hydrogels with soft and wet characteristics,which not only induce high tissue affinity but also allow the introduction of environmentally responsive nanoparticles to release specific smart properties.Herein,we reviewed novel smart hydrogels that can be applied in biomedicine and bioelectronics,and highlighted and discussed existing challenges in current technologies and research. 展开更多
关键词 BIOELECTRONICS BIOMEDICINE electrical response magnetic response smart hydrogel thermo‐responsive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部