With the increasing use of nuclear energy, there is a need for a wider range of efficient dosimeters for radiation detection and assessment. There has been a tremendous growth in the development of radiation detectors...With the increasing use of nuclear energy, there is a need for a wider range of efficient dosimeters for radiation detection and assessment. There has been a tremendous growth in the development of radiation detectors and devices in the past few decades. In recent years, the development of new materials for radiation dosimetry has progressed significantly. Alkaline earth sulfides (AES) have been known for a long time as excellent and versatile phosphor materials. In the present investigation, a number of phosphor samples such as mono-, binary and ternary sulfides of alkaline earths (II^a-VI^b) have been prepared and their TL properties have been studied with respect to exposure (x-ray) response and fading. In this paper, some results on SrS:Eu, Sm and CaS:Eu, Sm phosphors are presented. A type of novel OSL dosimeter is described. The dosimeter takes advantage of the characteristics of charge trapping materials SrS:Eu, Sm and CaS:Eu, Sm that exhibit optically stimulated luminescence (OSL). The measuring range of the dosimeter is from 0.01 to 1000 Gy. The OSL dosimeters provide capability for remote monitoring radiation locations which are difficult to access and hazardous. This equipment is relatively simple, small in size and has low power consumption. The device is suitable for space radiation dose exploration. In addition, it also can be used in IC and other radiation occasions and has good prospects.展开更多
Alkaline earth sulfides (MgS,CaS and BaS) crystal doped with rare-earth ions is an optically stimulated luminescence dosimeter with very high sensitivity,short time constant of the optically stimulated luminescence (O...Alkaline earth sulfides (MgS,CaS and BaS) crystal doped with rare-earth ions is an optically stimulated luminescence dosimeter with very high sensitivity,short time constant of the optically stimulated luminescence (OSL) separated perfectly from the stimulation.In this paper,an OSL dosimeter is described.It has linear dose response from 0.01 to 1000 Gy.The equipment,relatively simple and small in size is promising for applications in space exploration and for high dose irradiation and dangerous irradiation conditions.展开更多
The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It...The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It was found that after UV-C irra.diation, OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state. In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N, 700 m a.s.1.), it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCI:Eu2+ system and differentiate it from the ambient beta radiation dose.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10475112)the Western Light Foundation of 2005 years
文摘With the increasing use of nuclear energy, there is a need for a wider range of efficient dosimeters for radiation detection and assessment. There has been a tremendous growth in the development of radiation detectors and devices in the past few decades. In recent years, the development of new materials for radiation dosimetry has progressed significantly. Alkaline earth sulfides (AES) have been known for a long time as excellent and versatile phosphor materials. In the present investigation, a number of phosphor samples such as mono-, binary and ternary sulfides of alkaline earths (II^a-VI^b) have been prepared and their TL properties have been studied with respect to exposure (x-ray) response and fading. In this paper, some results on SrS:Eu, Sm and CaS:Eu, Sm phosphors are presented. A type of novel OSL dosimeter is described. The dosimeter takes advantage of the characteristics of charge trapping materials SrS:Eu, Sm and CaS:Eu, Sm that exhibit optically stimulated luminescence (OSL). The measuring range of the dosimeter is from 0.01 to 1000 Gy. The OSL dosimeters provide capability for remote monitoring radiation locations which are difficult to access and hazardous. This equipment is relatively simple, small in size and has low power consumption. The device is suitable for space radiation dose exploration. In addition, it also can be used in IC and other radiation occasions and has good prospects.
基金National Natural Science Foundation of China (10475112)Western Light Foundation of 2005 years
文摘Alkaline earth sulfides (MgS,CaS and BaS) crystal doped with rare-earth ions is an optically stimulated luminescence dosimeter with very high sensitivity,short time constant of the optically stimulated luminescence (OSL) separated perfectly from the stimulation.In this paper,an OSL dosimeter is described.It has linear dose response from 0.01 to 1000 Gy.The equipment,relatively simple and small in size is promising for applications in space exploration and for high dose irradiation and dangerous irradiation conditions.
文摘The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It was found that after UV-C irra.diation, OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state. In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N, 700 m a.s.1.), it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCI:Eu2+ system and differentiate it from the ambient beta radiation dose.