The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the in...Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the inherent complexity of this problem,relatively little attention has been devoted to this area.In this study,we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives,including maximizing stiffness,forward snapping force,and backward snapping force.Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness.It holds promise for future applications in the design and optimization of multistable structures with diverse objectives,addressing the requirements of various fields.展开更多
Optical bistability(OB)is capable of rapidly and reversibly transforming a parameter of an optical signal from one state to another,and homologous nonlinear optical bistable devices are core components of high-speed a...Optical bistability(OB)is capable of rapidly and reversibly transforming a parameter of an optical signal from one state to another,and homologous nonlinear optical bistable devices are core components of high-speed all-optical communication and all-optical networks.In this paper,we theoretically investigated the controllable OB from a Fabry-Pérot(FP)cavity with a nonlinear three-dimensional Dirac semimetal(3D DSM)in the terahertz band.The OB stems from the third-order nonlinear bulk conductivity of the 3D DSM and the resonance mode has a positive effect on the generation of OB.This FP cavity structure is able to tune the OB because the transmittance and the reflectance can be modulated by the Fermi energy of the 3D DSM.We believe that this FP cavity configuration could provide a reference concept for realizing tunable bistable devices.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR...Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.展开更多
提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角...提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
文摘Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the inherent complexity of this problem,relatively little attention has been devoted to this area.In this study,we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives,including maximizing stiffness,forward snapping force,and backward snapping force.Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness.It holds promise for future applications in the design and optimization of multistable structures with diverse objectives,addressing the requirements of various fields.
基金Project supported by the Wenzhou Major Science and Technology Innovation Project:Research and Industrialization of Key Technologies for Intelligent Dynamic Ultrahigh Pressure Microfluidizer(Grant No.ZG2023012)Wenzhou Major Science and Technology Innovation PR Project(Grant No.ZG2022011)+3 种基金the National Natural Science Foundation of China(Grant No.62305254)the Scientific Research Fund of the Natural Science Foundation of Hunan Province(Grant No.2022JJ30394)the Changsha Natural Science Foundation(Grant Nos.kq2202236 and kq2202246)the Science and Technology Project of Jiangxi Provincial Education Department(Grant No.GJJ190911).
文摘Optical bistability(OB)is capable of rapidly and reversibly transforming a parameter of an optical signal from one state to another,and homologous nonlinear optical bistable devices are core components of high-speed all-optical communication and all-optical networks.In this paper,we theoretically investigated the controllable OB from a Fabry-Pérot(FP)cavity with a nonlinear three-dimensional Dirac semimetal(3D DSM)in the terahertz band.The OB stems from the third-order nonlinear bulk conductivity of the 3D DSM and the resonance mode has a positive effect on the generation of OB.This FP cavity structure is able to tune the OB because the transmittance and the reflectance can be modulated by the Fermi energy of the 3D DSM.We believe that this FP cavity configuration could provide a reference concept for realizing tunable bistable devices.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金Project supported by the Xing Dian Talents Support Project of Yunnan Province(Grant No.YNWR-QNBJ-2018-0040)the Youth Project of Applied Basic Research of Yunnan Science(Grant No.202201AU070062)the Yunnan University’s Research Innovation Fund for Graduate Students(Grant No.KC-22221171).
文摘Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.
文摘提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。