期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Dynamic coupled thermo-hydro-mechanical problem for heterogeneous deep-sea sediments under vibration of mining vehicle
1
作者 Wei ZHU Xingkai MA +1 位作者 Xinyu SHI Wenbo MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期603-622,共20页
Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the ... Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the thermo-hydro-mechanical coupling dynamic response model of heterogeneous saturated porous sediments can be established to study the influence of elastic modulus,density,frequency,and load amplitude changes on the model.Based on the Green-Lindsay generalized thermoelasticity theory and Darcy’s law,the thermo-hydro-mechanical coupled dynamic response model and governing equations of heterogeneous deep-sea sediments with nonlinear elastic modulus and density are established.The analytical solutions of dimensionless vertical displacement,vertical stress,excess pore water pressure,and temperature are obtained by means of normal modal analysis,which are depicted graphically.The results show that the changes of elastic modulus and density have few effects on vertical displacement,vertical stress,and temperature,but have great effects on excess pore water pressure.When the mining machine vibrates,the heterogeneity of deep-sea sediments has great influence on vertical displacement,vertical stress,and excess pore water pressure,but has few effects on temperature.In addition,the vertical displacement,vertical stress,and excess pore water pressure of heterogeneous deep-sea sediments change more gently.The variation trends of physical quantities for heterogeneous and homogeneous deep-sea sediments with frequency and load amplitude are basically the same.The results can provide theoretical guidance for deep-sea mining engineering construction. 展开更多
关键词 heterogeneous deep-sea sediment coupled thermo-hydro-mechanical Green-Lindsay generalized thermoelastic theory normal modal anlalysis dynamic re-sponse
下载PDF
Formulation of thermo-hydro-mechanical coupling behavior of unsaturated soils based on hybrid mixture theory 被引量:2
2
作者 Guo-Qing Cai Cheng-Gang Zhao +1 位作者 Dai-Chao Sheng An-Nan Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期559-568,共10页
Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived... Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived to model the THM coupling behavior of unsaturated soils. The free-energy and dissipative functions for different phases are derived from Taylor's series expansions. Constitutive relations for THM coupled behaviors of unsaturated soils, which include deformation, entropy change, fluid flow, heat conduction, and dynamic compatibility conditions on the interfaces, are then established. The number of field equations is shown to be equal to the number of unknown variables; thus, a closure of this coupling problem is established. In addition to modifications of the physical conservation equations with coupling effect terms, the constitutive equations, which consider the coupling between elastoplastic deformation of the soil skeleton, fluid flow, and heat transfer, are also derived. 展开更多
关键词 thermo-hydro-mechanical coupling Unsatu-rated soils Hybrid mixture theory Constitutive equations ·Elastoplastic deformation
下载PDF
FEM analyses for influences of pressure solution on thermo-hydro-mechanical coupling in porous rock mass
3
作者 张玉军 杨朝帅 《Journal of Central South University》 SCIE EI CAS 2012年第8期2333-2339,共7页
The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in... The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same. 展开更多
关键词 pressure solution porous medium thermo-hydro-mechanical coupling FEM analysis
下载PDF
Rheological numerical simulation for thermo-hydro-mechanical coupling analysis for rock mass
4
作者 王芝银 许杰 +2 位作者 李云鹏 郭书太 艾传志 《Journal of Coal Science & Engineering(China)》 2007年第2期135-139,共5页
Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological ... Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological behavior of rock mass. In the paper, based on the fundamental theories of rock mass coupling theory and rheological mechanics, the rheological model for fully coupled thermo-hydro-mechanical analysis for rock mass was set up, and the corresponding constitutive relationship, the conservation equation of mass and the conservation equation of energy were given, and the finite element formulas were derived for coupling analysis of rock mass. During establishing governing equations, rock mass was assumed approximately as macro-equivalent continuum medium. The obtained rheological numerical model for fully coupled thermo-hydro-mechanical analysis can be used for analyzing and predicting the long-term stability of underground caverns and slope engineering under the condition of thermo-hydro-mechanical coupling with rheological deformation. 展开更多
关键词 thermo-hydro-mechanical coupling rheological analysis FEM model rockmass
下载PDF
A fully coupled thermo-hydro-mechanical model for unsaturated porous media 被引量:4
5
作者 Weizhong Chen Xianjun Tan Hongdan Yu Guojun Wu Shanpo Jia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期31-40,共10页
In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and ... In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and fully unified coupled thermo-hydro-mechanical model for unsaturated porous media is required to simulate the complex coupling mechanisms involved.Based on modified Darcy's and Fourier's laws,equations of mechanical equilibrium,mass conservation and energy conservation are derived by introducing void ratio and volumetric liquid water content into the model.The newly derived model takes into account the effects of temperature on the dynamic viscosity of liquid water and void ratio,the influence of liquid flow on temperature gradient(thermo-osmosis),the influence on mass and heat conservation equations,and the influence of heat flow on water pressure gradient and thermal convection.The new coupled THM constitutive model is constructed by a finite element program and is used to simulate the coupled behavior of a tunnel during excavation,ventilation and concrete lining stages.Oil and gas engineering,underground disposal of nuclear waste and tunnel engineering may be benefited from the development of the new model. 展开更多
关键词 porous media unsaturated media coupled thermo-hydro-mechanical thm model
下载PDF
Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints 被引量:2
6
作者 YANG Gao-sheng LIU Yue-miao +2 位作者 GAO Yu-feng LI Jian CAI Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2905-2918,共14页
Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with... Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation. 展开更多
关键词 buffer material thermo-hydro-mechanical coupling JOINTS self-healing effect
下载PDF
Coupled thermo-hydro-mechanical modeling of frost heave and water migration during artificial freezing of soils for mineshaft sinking 被引量:2
7
作者 M.Zhelnin A.Kostina +3 位作者 A.Prokhorov O.Plekhov M.Semin L.Levin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期537-559,共23页
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr... Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing. 展开更多
关键词 Artificial ground freezing(AGF) thermo-hydro-mechanical(thm)modeling Frost effects Frozen wall Shaft sinking
下载PDF
Coupled thermo-hydro-mechanical simulation of CO2 enhanced gas recovery with an extended equation of state module for TOUGH2MP-FLAC3D 被引量:1
8
作者 Yang Gou Zhengmeng Hou +2 位作者 Mengting Li Wentao Feng Hejuan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期904-920,共17页
As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.B... As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2. 展开更多
关键词 Carbon dioxide (CO2) enhanced gas recovery (CO2-EGR) CO2 sequestration Equation of state (EOS) coupled thermo-hydro-mechanical (thm) modeling TOUGH2MP-FLAC3D
下载PDF
Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media
9
作者 Ahmad Zareidarmiyan Hossein Salarirad +3 位作者 Victor Vilarrasa Kwang-Il Kim Jaewon Lee Ki-Bok Min 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期850-865,共16页
Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid... Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid injection and production.In some cases,reservoirs are highly fractured and the geomechanical response is controlled by fractures.Therefore,fractures should explicitly be included into numerical models to realistically simulate the THM responses of the subsurface.In this study,we perform coupled THM numerical simulations of water injection into naturally fractured reservoirs(NFRs)using CODE_BRIGHT and TOUGH-UDEC codes.CODE_BRIGHT is a finite element method(FEM)code that performs fully coupled THM analysis in geological media and TOUGH-UDEC sequentially solves coupled THM processes by combining a finite volume method(FVM)code that solves nonisothermal multiphase flow(TOUGH2)with a distinct element method(DEM)code that solves the mechanical problem(UDEC).First,we validate the two codes against a semi-analytical solution for water injection into a single deformable fracture considering variable permeability based on the cubic law.Then,we compare simulation results of the two codes in an idealized conceptual model that includes one horizontal fracture and in a more realistic model with multiple fractures.Each code models fractures differently.UDEC calculates fracture deformation from the fracture normal and shear stiffnesses,while CODE_BRIGHT treats fractures as equivalent porous media and uses the equivalent Young’s modulus and Poisson’s ratio of the fracture.Finally,we obtain comparable results of pressure,temperature,stress and displacement distributions and evolutions for the single horizontal fracture model.Despite some similarities,the two codes provide increasingly different results as model complexity increases.These differences highlight the challenging task of accurately modeling coupled THM processes in fractured media given their high nonlinearity. 展开更多
关键词 coupled thermo-hydro-mechanical(thm) analysis Improved oil recovery(IOR) Naturally fractured reservoir(NFR) CODE_BRIGHT TOUGH-UDEC
下载PDF
季节性非饱和冻土地温监测及冻胀特性THM耦合模拟
10
作者 王莉莉 刘英杰 +4 位作者 胡肖 李鹏辉 付世博 姜伟 张钰 《河南科学》 2023年第12期1798-1807,共10页
季节性冻土的冻胀融沉影响当地建筑物与构筑物的结构安全,找到地温随时间的变化数据可推算时间域内冻胀融沉对地面建筑的影响规律.以大庆市非饱和冻土为例,基于热传导理论和非饱和土渗流理论,在原位地温监测数据的基础上,建立了冻土的... 季节性冻土的冻胀融沉影响当地建筑物与构筑物的结构安全,找到地温随时间的变化数据可推算时间域内冻胀融沉对地面建筑的影响规律.以大庆市非饱和冻土为例,基于热传导理论和非饱和土渗流理论,在原位地温监测数据的基础上,建立了冻土的含相变过程的热-流-固(THM)三场耦合数值模型.通过数值模拟结果与实测结果的比较验证了冻土模型的准确性.结果表明:地温随地表温度呈延时周期性变化,在地面以下2.0 m以内,深度每增加0.5 m,温度波峰和波谷日大约推迟30 d;冻结期持续时间影响冻结深度,从而对当地土的周期性冻胀量起决定性影响,冻结期内土的每年最大冻胀位移为30.0 mm左右,冻结期结束后地面高度将快速恢复到冻结期之前的水平,季冻区冻胀融沉敏感性建筑物及构筑物的基础施工时间选择在冻结期结束后2个月至冻结期开始前,可有效减少冻胀融沉危害,大庆及其他类似季节性冻土地区的土壤冻融和冻融过程中的水热迁移研究可作为借鉴. 展开更多
关键词 季节性冻土区 冻胀融沉 thm耦合 地温场
下载PDF
Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone 被引量:4
11
作者 G. Armand F. Bumbieler +3 位作者 N. Conil R. de la Vaissière J.-M. Bosgiraud M.-N. Vu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期33-45,共13页
In the context of radioactive waste disposal,an underground research laboratory(URL)is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste dis... In the context of radioactive waste disposal,an underground research laboratory(URL)is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste disposal facility within a geological formation.The Meuse/Haute-Marne URL is a sitespecific facility planned to study the feasibility of a radioactive waste disposal in the Callovo-Oxfordian(COx)claystone.The thermo-hydro-mechanical(THM)behaviour of the host rock is significant for the design of the underground nuclear waste disposal facility and for its long-term safety.The French National Radioactive Waste Management Agency(Andra)has begun a research programme aiming to demonstrate the relevancy of the French high-level waste(HLW)concept.This paper presents the programme implemented from small-scale(small diameter)boreholes to full-scale demonstration experiments to study the THM effects of the thermal transient on the COx claystone and the strategy implemented in this new programme to demonstrate and optimise current disposal facility components for HLW.It shows that the French high-level waste concept is feasible and working in the COx claystone.It also exhibits that,as for other plastic clay or claystone,heating-induced pore pressure increases and that the THM behaviour is anisotropic. 展开更多
关键词 In situ experiments Claystone thermo-hydro-mechanical(thm) behaviour Research programme Radioactive high-level waste(HLW) DISPOSAL
下载PDF
THM耦合条件下CO_(2)地质封存注入方案优化研究 被引量:2
12
作者 龚耕 李毅 +2 位作者 唐栋 喻浩 蒋中明 《工程地质学报》 CSCD 北大核心 2023年第3期1084-1096,共13页
我国首个GCS示范工程神华多储层场地出现了单储层吸气量剧增的现象,在其原设计方案下,压缩后变冷的CO_(2)被注入至深部高温含水层中,引起首层含水层中流体压力和温度应力急剧变化,从而导致大量裂隙产生,增加了单储层的可注入性的同时,... 我国首个GCS示范工程神华多储层场地出现了单储层吸气量剧增的现象,在其原设计方案下,压缩后变冷的CO_(2)被注入至深部高温含水层中,引起首层含水层中流体压力和温度应力急剧变化,从而导致大量裂隙产生,增加了单储层的可注入性的同时,降低了系统总体封存能力,并带来了泄露风险。本文基于TOUGH-FLAC三维多相多组分THM耦合数值模拟程序,开发了场地尺度岩体开裂模块来研究CO_(2)注入方案对目标含水层耦合特性和开裂特性的综合影响,并设计了定速率、先增速后定速、间歇定速、间歇变速、二次变速等多类型注入方案,分别计算分析了储层岩体的热力学特性、多相流特性与开裂情况。结果表明:设计方案下含水层产生了较多的开裂现象,是导致其可注入性增大的根本原因,持续注入CO_(2)引起含水层岩体中有效应力大幅度降低,渗透率增加,定速率方案产生的温度应力最小,在设计各类注入方案中,定速率注入方案下储层的裂缝发育最少。 展开更多
关键词 thm耦合 GSC 二氧化碳地质封存 数值模拟 开裂
下载PDF
Experiments on thermo-hydro-mechanical behaviour of Opalinus Clay at Mont Terri rock laboratory, Switzerland 被引量:3
13
作者 Paul Bossart David Jaeggi Christophe Nussbaum 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期120-128,共9页
Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by th... Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock e in our case the Opalinus Clay e and an engineered barrier system(EBS).The Swiss repository concept for spent fuel and vitrified high-level waste(HLW)consists of waste canisters,which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material(GBM).We describe here a selection of five in-situ experiments where characteristic hydro-mechanical(HM)and thermo-hydro-mechanical(THM)processes have been observed.The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone(EDZ)was monitored around a gallery in the Opalinus Clay(ED-B experiment).Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour.The same measurements were subsequently carried out in a heater test(HE-D)where we were able to characterise the Opalinus Clay in terms of its THM behaviour.These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock.For a presentation of the Swiss concept for HLW storage,we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory:(1)the engineered barrier(EB)experiment,(2)the in-situ heater test on key-THM processes and parameters(HE-E)experiment,and(3)the full-scale emplacement(FE)experiment.The first demonstration experiment has been dismantled,but the last two ones are on-going. 展开更多
关键词 Deep geological disposal Radioactive waste Demonstration experiments Engineered barrier system(EBS) Granular backfill material(GBM) BENTONITE thermo-hydro-mechanical(thm) BEHAVIOUR
下载PDF
Thermal-hydro-mechanical coupling damage model of brittle rock 被引量:1
14
作者 李鹏 饶秋华 +2 位作者 李卓 马雯波 马彬 《Journal of Central South University》 SCIE EI CAS 2014年第3期1136-1141,共6页
Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage varia... Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model. 展开更多
关键词 damage model thm coupling mechanism permeability test thm coupling test brittle rock
下载PDF
Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation 被引量:1
15
作者 蒋中明 HOXHA Dashnor +1 位作者 HOMAND Fran?oise 陈永贵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期631-637,共7页
To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-si... To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation. 展开更多
关键词 argillaceous formation thermo-hydro-mechanicalthm process in-situ test
下载PDF
Numerical thermo-hydro-mechanical modeling of compacted bentonite in China-mock-up test for deep geological disposal 被引量:6
16
作者 Liang Chen Ju Wang +2 位作者 Yuemiao Liu Federic Collin Jingli Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第2期183-192,I0002-I0005,共14页
The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi (GMZ) bentonite under coupled thermo-hydro-mechanical (THM) conditions in deep geological disposal. A numerical study of the test is... The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi (GMZ) bentonite under coupled thermo-hydro-mechanical (THM) conditions in deep geological disposal. A numerical study of the test is conducted in this paper. The principal THM characteristics of the bentonite are presented at first. A THM model is then presented to tackle the complex coupling behavior of the bentonite. The model of Alonso-Gens is incorporated to reproduce the mechanical behavior of the bentonite under unsaturated conditions. With the proposed model, numerical simulations of the China-mock-up test are carried out by using the code of LAGAMINE. The time variations associated with the temperature, degree of saturation, suction and swelling pressure of the compacted bentonite are studied. The results suggest that the proposed model is able to reproduce the mechanical behavior of the bentonite, and to predict moisture motion under coupled THM conditions. 展开更多
关键词 radioactive waste disposal GMZ bentonite thermo-hydro-mechanical thm modeling China-mock-up test
下载PDF
Parametric study of thermo-hydro-mechanical response of claystone with consideration of steel corrosion
17
作者 Y.Jia H.B.Bian +1 位作者 G.Duveau J.F.Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期67-80,共14页
In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numer... In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numerical simulations are performed by using a coupled THM finite element code and two different constitutive models:a visco-elastoplastic model for geological formation and a von Mises type model for steel liner.The mechanical properties and deformation behavior of corroded steel are described in a conceptual model.Finally,a disposal tunnel supported by a steel liner is studied and a series of parametric studies is defined to demonstrate the corrosion effects of steel liner on the THM response of the claystone.The comparison of different numerical calculations exhibits that the volumetric expansion related to corrosion products has an important impact on the stress and displacement fields in the claystone surrounding the disposal tunnel.However,the evolutions of temperature and liquid pressure in the claystone are essentially controlled by its THM properties and independent of the steel corrosion. 展开更多
关键词 Claystone Steel corrosion thermo-hydro-mechanical(thm) coupling Disposal tunnel Corrosion rate Volumetric expansion of corrosion products
下载PDF
THM Coupled Modeling in Near Field of an Assumed HLW Deep Geological Disposal Repository
18
作者 ShenZhenyao LiGuoding LiShushen 《Journal of China University of Geosciences》 SCIE CSCD 2004年第4期388-394,共7页
One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupl... One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository. 展开更多
关键词 HLW disposal thermo-hydro-mechanical (thm) coupled equations modeling.
下载PDF
Thermo-hydro-mechanical modeling of fault discontinuities using zero-thickness interface element
19
作者 Ali Ranjbar Hossein Hassani +1 位作者 Kourosh Shahriar Mohammad Javad Ameri Shahrabi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期74-88,共15页
In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations ... In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations which are derived from the Biot’s consolidation theory.Fluid pore pressure,solid displacement,and temperature are chosen as initial variables in these equations,and the finite element method in combination with the interface element is used for spatial discretization of continuous and discontinuities(fault)parts of the medium to solve the equations.The main purpose of this study is providing precise formulations,applicability,and ability of the triple-node zero-thickness interface element in THM modeling of faults.It should be noted that the system of equations is solved using a computer code written in Matlab program.In order to verify the developed method,simulations of index problems such as Mandel’s problem,and coupled modeling of a faulted porous medium and a faulted aquifer are presented.The modeling results obtained from the developed method show a very good agreement with those by other modeling methods,which indicates its accuracy. 展开更多
关键词 thermo-hydro-mechanical(thm) simulation Geomechanical coupling Zero-thickness ELEMENT Joint ELEMENT FINITE ELEMENT
下载PDF
Joints in unsaturated rocks:Thermo-hydro-mechanical formulation and constitutive behaviour
20
作者 E.E.Alonso M.T.Zandarín S.Olivella 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第3期200-213,共14页
A formulation for the coupled analysis of thermo-hydro-mechanical (THM) problems in joints is first presented. The work involves the establishment of equilibrium and mass and energy balance equations. Balance equati... A formulation for the coupled analysis of thermo-hydro-mechanical (THM) problems in joints is first presented. The work involves the establishment of equilibrium and mass and energy balance equations. Balance equations were formulated taking into account two phases: water and air. The joint element developed was implemented in a general purpose finite element computer code for THM analysis of porous media (Code_Bright). The program was then used to study a number of cases ranging from laboratory tests to large scale in situ tests. A numerical simulation of coupled hydraulic shear tests of rough granite joints is first presented. The tests as well as the model show the coupling between permeability and the deformation of thejoints. The experimental investigation was focused on the effects of suction on the mechanical behaviour of rock joints. Laboratory tests were performed in a direct shear cell equipped with suction control. Suction was imposed using a vapour forced convection circuit connected to the cell and controlled by an air pump. Artificial joints of Lilla claystone were prepared.Joint roughness of varying intensity was created by carving the surfaces in contact in such a manner that rock ridges of different tip angles were formed. These angles ranged from 0° (smooth joint) to 45° (very rough joint profile). The geometric profiles of the two surfaces in contact were initially positioned in a "matching" situation. Several tests were performed for different values of suctions (200, 100, and 20 MPa) and for different values of vertical stresses (30, 60, and 150 kPa). A constitutive model including the effects of suction and joint roughness is proposed to simulate the unsaturated behaviour of rock joints. The new constitutive law was incorporated in the code and experimental results were numerically simulated. 展开更多
关键词 Rock joints thermo-hydro-mechanical thm behaviour Finite elements Suction controlled shear tests Constitutive model Numerical simulations
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部