期刊文献+
共找到850,671篇文章
< 1 2 250 >
每页显示 20 50 100
A thermo-mechanical damage constitutive model for deep rock considering brittleness-ductility transition characteristics
1
作者 FENG Chen-chen WANG Zhi-liang +2 位作者 WANG Jian-guo LU Zhi-tang LI Song-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2379-2392,共14页
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi... This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications. 展开更多
关键词 deep rock crack initiation threshold thermo-mechanical coupling statistical damage model distortion energy theory
下载PDF
Geostatistical seismic inversion and 3D modelling of metric flow units,porosity and permeability in Brazilian presalt reservoir 被引量:1
2
作者 Rodrigo Penna Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1699-1718,共20页
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ... Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow. 展开更多
关键词 Flowunits Geostatistical inversion Presalt reservoir 3D reservoir modelling Petrophysical modelling
下载PDF
Hydrological Modelling of the Casamance River in Its Upstream Section (Basin at Kolda Level) to Predict Its Future States as a Function of Different Stresses
3
作者 Coumba Ndiaye Saïdou Ndao 《Open Journal of Geology》 CAS 2024年第2期143-154,共12页
Flow records for stations in the Casamance basin are incomplete. Several gaps were noted over the 1980-2021 study period, making this study tedious. The aim of this study is to assess the potential impact of climate c... Flow records for stations in the Casamance basin are incomplete. Several gaps were noted over the 1980-2021 study period, making this study tedious. The aim of this study is to assess the potential impact of climate change on the flow of the Casamance watershed at Kolda. To this end, hydrological series are simulated and then extended using the GR2M rainfall-runoff model, with a monthly time step. Projected climate data are derived from a multi-model ensemble under scenarios SSP2-4.5 (scenario with additional radiative forcing of 4.5 W/m<sup>2</sup> by 2099) and SSP5-8.5 (scenario with additional radiative forcing of 8.5 W/m<sup>2</sup> by 2099). An analysis of the homogeneity of the rainfall data series from the Kolda station was carried out using KhronoStat software. The Casamance watershed was then delimited using ArcGIS to determine the morphometric parameters of the basin, which will be decisive for the rest of the work. Next, monthly evapotranspiration was calculated using the formula proposed by Oudin et al. This, together with rainfall and runoff, forms the input data for the model. The GR2M model was then calibrated and cross-validated using various simulations to assess its performance and robustness in the Casamance watershed. The version of the model with the calibrated parameters will make it possible to extend Casamance river flows to 2099. This simulation of future flows with GR2M shows a decrease in the flow of the Casamance at Kolda with the two scenarios SSP2-4.5 and SSP5-8.5 during the rainy period, and almost zero flows during the dry season from the period 2040-2059. 展开更多
关键词 Casamance Watershed Climate Change GR2M Climate models
下载PDF
Modelling Land Use/Land Cover Change of River Rwizi Catchment, South-Western Uganda Using GIS and Markov Chain Model
4
作者 Lauben Muhangane Morgan Andama 《Journal of Water Resource and Protection》 CAS 2024年第2期181-206,共26页
Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19... Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products. 展开更多
关键词 Land Cover River Catchment Geographic Information System Markov model Sustainable Land Management
下载PDF
Numerical analysis of high‑speed railway slab tracks using calibrated and validated 3D time‑domain modelling
5
作者 A.F.Esen O.Laghrouche +4 位作者 P.K.Woodward D.Medina‑Pineda Q.Corbisez J.Y.Shih D.P.Connolly 《Railway Engineering Science》 EI 2024年第1期36-58,共23页
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ... Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds. 展开更多
关键词 High-speed railways Slab track New ballastless track Ballasted track Critical speeds Finite element modelling Calibration of numerical models
下载PDF
Implication of community-level ecophysiological parameterization to modelling ecosystem productivity:a case study across nine contrasting forest sites in eastern China
6
作者 Minzhe Fang Changjin Cheng +2 位作者 Nianpeng He Guoxin Si Osbert Jianxin Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期1-11,共11页
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations... Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods. 展开更多
关键词 BIOME-BGC Community traits Forest Ecosystems model parameterization
下载PDF
Prospect Theory Based Individual Irrationality Modelling and Behavior Inducement in Pandemic Control
7
作者 Wenxiang Dong H.Vicky Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期139-170,共32页
Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Mean... Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Meanwhile,existing disease control methods often assume users’full compliance with measures like mandatory isolation,which does not align with the actual situation.To address these issues,this paper proposes a prospect theorybased framework to model users’decision-making process in epidemics and analyzes how irrationality affects individuals’behaviors and epidemic dynamics.According to the analysis results,irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.Then,this paper proposes a behavior inducement algorithm to guide individuals’behaviors and control the spread of disease.Simulations and real user tests validate our analysis,and simulation results show that the proposed behavior inducement algorithm can effectively guide individuals’behavior. 展开更多
关键词 Disease spread behavior model IRRATIONALITY prospect theory
下载PDF
Experiment and constitutive modelling of creep deformation in the frozen silt-concrete interface
8
作者 HE Fei LIU Qingquan +4 位作者 LEI Wanyu WANG Xu MAO Erqing LI Sheng CHEN Hangjie 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3172-3185,共14页
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character... To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions. 展开更多
关键词 Creep characteristics Contact surface Frozen silt Constitutive model Freezing temperature
下载PDF
Modelling analysis embodies drastic transition among global potential natural vegetations in face of changing climate
9
作者 Zhengchao Ren Lei Liu +1 位作者 Fang Yin Xiaoni Liu 《Forest Ecosystems》 SCIE CSCD 2024年第2期184-192,共9页
Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional pr... Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide. 展开更多
关键词 Potential natural vegetation Global warming Vegetation classification Predicted model CSCS
下载PDF
Challenges in predictive modelling of chronic kidney disease:A narrative review
10
作者 Sukhanshi Khandpur Prabhaker Mishra +1 位作者 Shambhavi Mishra Swasti Tiwari 《World Journal of Nephrology》 2024年第3期26-33,共8页
The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of ... The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of its onset.There are various regression methods for predictive modeling based on the distribution of the outcome variable.However,the accuracy of the predictive model depends on how well the model is developed by taking into account the goodness of fit,choice of covariates,handling of covariates measured on a continuous scale,handling of categorical covariates,and number of outcome events per predictor parameter or sample size.Optimal performance of a predictive model on an independent cohort is desired.However,there are several challenges in the predictive modeling of CKD.Disease-specific methodological challenges hinder the development of a predictive model that is cost-effective and universally applicable to predict CKD onset.In this review,we discuss the advantages and challenges of various regression models available for predictive modeling and highlight those best for future CKD prediction. 展开更多
关键词 Chronic kidney disease Predictive modelling Regression Statistical modelling METHODOLOGY
下载PDF
Investigation of Maxima Assumptions in Modelling Tropical Cyclone- Induced Hazards in the South China Sea
11
作者 WEN Ze-guo WANG Fu-ming +1 位作者 WAN Jing YANG Fan 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期491-504,共14页
The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption ass... The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption assumes thatjoint N-year extreme wind and wave events can be independently estimated and subsequently combined. The secondone assumes peak wind and waves can be modelled as occurring simultaneously during a tropical cyclone (TC) event.To better understand the potential TC activity, a set of 10000 years synthetic TC events are generated. The wind fieldmodel and the Mike 21 spectral wave model are employed to model the TC-induced hazards. Subsequently, theeffect of the assumptions is evaluated by analyzing the peak structural response of both monopile and semisubmersibleoffshore wind turbines during TC events. The results demonstrate that the examined assumptions are generally accurate.By assessing the implications of these assumptions, valuable insights are obtained, which can inform andimprove the modelling of TC-induced hazards in the SCS region. 展开更多
关键词 tropical cyclone numerical wave modelling hazards offshore wind turbines structural response
下载PDF
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
12
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 Discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Numerical Modelling of Coupled Heat and Mass Transfer in Porous Materials: Application to Cinder Block Bricks
13
作者 Benjamin Kiema Ousmane Coulibaly +1 位作者 Xavier Chesneau Belkacem Zeghmati 《Open Journal of Applied Sciences》 2024年第9期2360-2373,共14页
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p... In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat. 展开更多
关键词 Numerical modelling Coupled Transfer Building Materials Luikov model Finite Differences
下载PDF
A framework for dynamic modelling of railway track switches considering the switch blades,actuators and control systems
14
作者 Saikat Dutta Tim Harrison +2 位作者 Christopher Ward Roger Dixon Phil Winship 《Railway Engineering Science》 EI 2024年第2期162-176,共15页
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital... The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure. 展开更多
关键词 Railway track switch Mathematical modelling Redundant actuation Finite element analysis
下载PDF
Modelling the monthly hydrological balance using Soil and Water Assessment Tool(SWAT)model:A case study of the Wadi Mina upstream watershed
15
作者 Hanane Mebarki Noureddine Maref Mohammed El-Amine Dris 《Journal of Groundwater Science and Engineering》 2024年第2期161-177,共17页
Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle ... Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed(northwest Algeria)by applying the Soil and Water Assessment Tool(SWAT)hydrological model.SWAT modelling integrates spatial data such as the Digital Elevation Model(DEM),land use,soil types and various meteorological parameters including precipitation,maximum and minimum temperatures,relative humidity,solar radiation and wind speed.The SWAT model was calibrated and validated using data from January 2012 to December 2014,with a calibra-tion period from January 2012 to August 2013 and a validation period from September 2013 to December 2014.Sensitivity and parameter calibration were conducted using the SWAT-SA program,and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge,assessed through statistical coefficients including Nash-Sutcliffe Efficiency(NSE),coefficient of determination(R2)and Percent Bias(PBAIS).Calibration results indicated favourable objec-tive function values(NSE=0.79,R2=0.93,PBAIS=-8.53%),although a slight decrease was observed during validation(NSE=0.69,R2=0.86,and PBAIS=-11.41%).The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin.The SWAT model revealed that approximately 71%of the precipitation in the basin evaporates,while only 29%contributes to surface runoff or infiltration into the soil. 展开更多
关键词 SWAT model Performance Parameters RUNOFF GROUNDWATER WADI
下载PDF
Modelling the viscoplastic behaviour of Callovo-Oxfordian claystone with consideration of damage effect
16
作者 Hao Wang Yu-Jun Cui +1 位作者 Minh Ngoc Vu Jean Talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期303-316,共14页
In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute... In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep. 展开更多
关键词 Callovo-Oxfordian(COx)claystone Excavation damage Time-dependent behaviour SUCTION Viscoplastic model
下载PDF
Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects
17
作者 Bo Yang Yucun Qian +2 位作者 Jianzhong Xu Yaxing Ren Yixuan Chen 《Energy Engineering》 EI 2024年第8期2085-2091,共7页
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to... 1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5]. 展开更多
关键词 Lithium batteries optimization operation modelling state estimation life prediction fault diagnosis
下载PDF
Physical and Thermo-Mechanical Properties of Composite Materials Based on Raw Earth and Crushed Palm Leaf Fibers (Borassus aethiopum)
18
作者 Mouhamadou Nabi Kane Mapathe Ndiaye +1 位作者 Pape Moussa Touré Adama Dione 《Materials Sciences and Applications》 2024年第9期358-377,共20页
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples... The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes. 展开更多
关键词 Raw Earth Palma Leaf Fibers Ecological Composite Materials PHYSICAL thermo-mechanical Thermal Conductivity Thermal Effusivity
下载PDF
Nucleation of Supercooled Water by Neutrons: Latitude Dependence and Implications for Cloud Modelling
19
作者 Peter W. Wilson Elizabeth Wilson-Park Abraham G. Wilson 《Atmospheric and Climate Sciences》 2024年第2期221-232,共12页
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu... It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. . 展开更多
关键词 Climate models Ice Nucleation Neutrons SUPERCOOLING
下载PDF
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char:A statistical neural
20
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +4 位作者 Noor Zainab Habib Aliyu Usman Abiola Adebanjo Surajo Abubakar Wada Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2024年第3期318-333,共16页
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw... The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices. 展开更多
关键词 Waste tire Neural network Sustainable practices Asphalt mixtures Predictive model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部