The effect of 6H-SiC crystal growth shapes on the thermo-elastic stress distribution in the growing crystal was systematically in- vestigated by using a finite element method. The thermo-elastic stress distribution in...The effect of 6H-SiC crystal growth shapes on the thermo-elastic stress distribution in the growing crystal was systematically in- vestigated by using a finite element method. The thermo-elastic stress distribution in the crystal with a flat growth shape was more homoge- neous than that in the crystals with concave and convex growth shapes, and the value of thermo-elasticity in the crystal with a fiat growth shape was also smaller than that in the two other types of crystals. The maximum values of thermo-elastic stress appeared at interfaces be- tween the crystal and the graphite lid. If the lid was of the same properties as 6H-SiC, the thermo-elastic stress would decrease in two orders of magnitude. Thus, to grow 6H-SiC single crystals of high quality, a transition layer of SiC formed by deposition or reaction is suggested; meanwhile the thermal field in the growth chamber should be adjusted to maintain the crystals with fiat growth shapes.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51072157 and 50821140308)the Doctoral Fund of the Ministry of Education, China (No. 20100201110036)
文摘The effect of 6H-SiC crystal growth shapes on the thermo-elastic stress distribution in the growing crystal was systematically in- vestigated by using a finite element method. The thermo-elastic stress distribution in the crystal with a flat growth shape was more homoge- neous than that in the crystals with concave and convex growth shapes, and the value of thermo-elasticity in the crystal with a fiat growth shape was also smaller than that in the two other types of crystals. The maximum values of thermo-elastic stress appeared at interfaces be- tween the crystal and the graphite lid. If the lid was of the same properties as 6H-SiC, the thermo-elastic stress would decrease in two orders of magnitude. Thus, to grow 6H-SiC single crystals of high quality, a transition layer of SiC formed by deposition or reaction is suggested; meanwhile the thermal field in the growth chamber should be adjusted to maintain the crystals with fiat growth shapes.
基金Project supported by the National Basic Research Program(973 Program)of China(No.2012CB719800)the National Natural Science Foundation of China(Nos.51378466 and 51508504)