As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components o...As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components on the explosive characteristics of thermobaric explosives, various high explosives and oxidants were selected to formulate five different types of thermobaric explosive. Then they were tested in both open space and closed space respectively. Pressure measurement system, high-speed camera,infrared thermal imager and multispectral temperature measurement system were used for pressure,temperature and fireball recording. The effects of different components on the explosive characteristics of thermobaric explosive were analyzed. The results showed that in open space, the overpressure is dominated by the high explosives content in the formulation. The addition of the oxidants will decrease the explosion overpressure but will increase the duration and overall brightness of the fireball. While in closed space, the quasi-static pressure formed after the explosion is positively correlated with the temperature and gas production. In addition, it was found that the differences in shell constraints can also alter the afterburning reaction of thermobaric explosives, thus affecting their energy output characteristics. PVC shell constraint obviously increases the overpressure and makes the fireball burn more violently.展开更多
A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacycl...A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.12302440)China Postdoctoral Science Foundation(Grant No.2023M741713)。
文摘As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components on the explosive characteristics of thermobaric explosives, various high explosives and oxidants were selected to formulate five different types of thermobaric explosive. Then they were tested in both open space and closed space respectively. Pressure measurement system, high-speed camera,infrared thermal imager and multispectral temperature measurement system were used for pressure,temperature and fireball recording. The effects of different components on the explosive characteristics of thermobaric explosive were analyzed. The results showed that in open space, the overpressure is dominated by the high explosives content in the formulation. The addition of the oxidants will decrease the explosion overpressure but will increase the duration and overall brightness of the fireball. While in closed space, the quasi-static pressure formed after the explosion is positively correlated with the temperature and gas production. In addition, it was found that the differences in shell constraints can also alter the afterburning reaction of thermobaric explosives, thus affecting their energy output characteristics. PVC shell constraint obviously increases the overpressure and makes the fireball burn more violently.
基金financed by the Military University of Technology under research project UGB 2024the Ludwig-Maximilian University of Munich (LMU)。
文摘A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.