期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息

年份

共找到840篇文章
< 1 2 42 >
每页显示 20 50 100
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
1
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song Hangbin Zheng Cheng Tian Ke Gao Nan Sun Zhixing Jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 Calcium looping(CaL) Solar thermochemical Energy storage Binary sulfate Fast reaction kinetics
下载PDF
Thermochemical splitting of CO_(2) on perovskites for CO production: A review
2
作者 Biduan Chen Harriet Kildahl +3 位作者 Hui Yang Yulong Ding Lige Tong Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期464-485,I0011,共23页
Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have bee... Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research. 展开更多
关键词 Perovskite thermochemical cycles CO_(2) splitting Fuel production Non-stoichiometric
下载PDF
Particle Size Optimization of Thermochemical Salt Hydrates for High Energy Density Thermal Storage
3
作者 Andrew Martin Drew Lilley +1 位作者 Raνi Prasher Sumanjeet Kaur 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期326-333,共8页
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy... Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated. 展开更多
关键词 high energy density hydration kinetics long-term cycling thermal energy storage thermochemical materials
下载PDF
Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues
4
作者 Omojola Awogbemi Ayotunde Adigun Ojo Samson Adedayo Adeleye 《Journal of Renewable Materials》 EI CAS 2024年第1期1-28,共28页
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro... The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy. 展开更多
关键词 Crop residues carbon neutrality PYROLYSIS GASIFICATION green hydrogen thermochemical conversion
下载PDF
Mesoscale study on explosion-induced formation and thermochemical response of PTFE/Al granular jet 被引量:3
5
作者 Yuan-feng Zheng Zhi-jian Zheng +2 位作者 Guan-cheng Lu Hai-fu Wang Huan-guo Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期112-125,共14页
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul... The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified. 展开更多
关键词 Reactive materials Shaped charge Mesoscale simulation FORMATION thermochemical response
下载PDF
Design and synthesis of thermally stable single atom catalysts for thermochemical CO_(2) reduction 被引量:2
6
作者 Eswaravara Prasadarao Komarala Ayesha A.Alkhoori +2 位作者 Xiaolong Zhang Hui-Ming Cheng Kyriaki Polychronopoulou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期246-262,I0006,共18页
The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for... The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for converting CO_(2)into valuable chemicals and fuels.These conversions have the potential to establish a closed artificial carbon cycle and provide an alternative resource to depleting fossil fuels.Among the various conversion routes,thermochemical CO_(2)reduction stands out as a promising candidate for industrialization.Within the realm of heterogeneous catalysis,single atom catalysts(SACs)have garnered significant attention.The utilization of SACs offers tremendous potential for enhancing catalytic performance.To achieve optimal activity and selectivity of SACs in CO_(2)thermochemical reduction reactions,a comprehensive understanding of key factors such as single atom metal-support interactions,chemical coordination,and accessibility of active sites is crucial.Despite extensive research in this field,the atomic-scale reaction mechanisms in different chemical environments remain largely unexplored.While SACs have been found successful applications in electrochemical and photochemical CO_(2)reduction reactions,their implementation in thermochemical CO_(2)reduction encounters challenges due to the sintering and/or agglomeration effects that occur at elevated temperatures.In this review,we present a unique approach that combines theoretical understanding with experimental strategies to guide researchers in the design of controlled and thermally stable SACs.By elucidating the underlying principles,we aim to enable the creation of SACs that exhibit stable and efficient catalytic activity for thermochemical CO_(2)reduction reactions.Subsequently,we provide a comprehensive overview of recent literature on noble metal-and transition metal-based SACs for thermochemical CO_(2)reduction.The current review is focused on certain CO_(2)-derived products involving one step reduction only for simplicity and for better understanding the SACs enhancement mechanism.We emphasize various synthesis methods employed and highlight the catalytic activity of these SACs.Finally,we delve into the perspectives and challenges associated with SACs in the context of thermochemical CO_(2)reduction reactions,providing valuable insights for future research endeavor.Through this review,we aim to contribute to the advancement of SACs in the field of thermochemical CO_(2)reduction,shedding light on their potential as effective catalysts and addressing the challenges that need to be overcome for their successful implementation as paradigm shift in catalysis. 展开更多
关键词 CO_(2) utilization CO_(2) conversion SACs Added-value products thermochemical catalysis
下载PDF
Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials
7
作者 Louis F.Marie Karina Sałek Tadhg S.O’Donovan 《Energy Engineering》 EI 2023年第10期2193-2209,共17页
Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about ... Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles. 展开更多
关键词 Composites thermochemical energy storage salt-in-porous-matrix zeolites seasonal storage
下载PDF
Experimental and numerical studies of Ca(OH)_(2)/CaO dehydration process in a fixed-bed reactor for thermochemical energy storage
8
作者 Zhihao Zhang Danyang Song +2 位作者 Hengxing Bao Xiang Ling Xiaogang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期11-20,共10页
The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendlin... The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions. 展开更多
关键词 thermochemical energy storage REACTOR Ca(OH)_(2)/CaO DEHYDRATION Experiment research Numerical simulation
下载PDF
A thermochemical model description of CaO_(2)-SiO2-Al_(2)O_(3) silicate system
9
作者 Qiu-lin Wen Feng-man Shen +3 位作者 Hai-yan Zheng Yun-bao Gao Yu Wang Yan-chun Lou 《China Foundry》 SCIE EI CAS CSCD 2023年第6期480-490,共11页
A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activitie... A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activities on the thermodynamic properties of slags.Using this model,iso-activity contours were obtained for oxide components CaO,SiO_(2) and Al2O3 in this system at temperatures of 1,873 K and 1,773 K.When compared with the IMCT model,it is found that the predicted activities of oxide components in the CaO-SiO_(2)-Al_(2)O_(3) system using the model developed in this study better matches experimental data from literature in terms of both trend and numerical value.Therefore,the model developed in this study can serve as a robust modeling tool for metallurgical processes,and the thermodynamic data predicted by this new model can be used to improve the metallurgical technology. 展开更多
关键词 thermochemical model CaO-SiO_(2)-Al_(2)O_(3)slag system thermodynamic properties molecule coexistence theory
下载PDF
A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes 被引量:10
10
作者 Paola Ibarra-Gonzalez Ben-Guang Rong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1523-1535,共13页
The rapid increase in energy demand,the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector.Alternate renewable and sustainable so... The rapid increase in energy demand,the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector.Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL)transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels.Therefore,development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels,such as,gasoline,diesel and jet fuel can be accomplished through various thermochemical processes and processing routes.The major steps for the production of BtL fuels involve feedstock selection,physical pretreatment,production of bio-oil,upgrading of bio-oil to transportation fuels and recovery of value-added products.The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels. 展开更多
关键词 Biofuels LIGNOCELLULOSIC BIOMASS Process ROUTE thermochemical CONVERSION UPGRADING Separation
下载PDF
Analysis of CO_2 utilization into synthesis gas based on solar thermochemical CH_4-reforming 被引量:5
11
作者 Bachirou Guene Lougou Yong Shuai +3 位作者 Gédéon Chaffa Huang Xing Heping Tan Huibin Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期61-72,共12页
In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) techn... In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) technologies. The P1 radiation heat transfer model is adopted to establish the heat and mass transfer model coupled with thermochemical reaction kinetics. The reactor thermal behavior with direct heat transfer between gaseous reactant and products evolution and the effects of different structural parameters were evaluated. It was found that the reactor has the potential to utilize by ~60% of CO_2 captured with 40% of CH_4 co-fed into syngas(72.9% of H_2 and 27.1% of CO) at 741.31 k W/mof incident radiation heat flux. However, the solar irradiance heat flux and temperature distribution were found to significantly affect the reactant species conversion efficiency and syngas production. The chemical reaction is mainly driven by the thermal energy and higher species conversion into syngas was observed when the temperature distribution at the inner cavity of the reactor was more uniform. Designed a solar thermochemical reactor able to volumetric store concentrated irradiance could highly improve CCU technologies for producing energy-rich chemicals. Besides, the mixture gas inlet velocity, operating pressure and CO_2/CH_4 feeding ratio were crucial to determining the efficiency of CO_2 utilization to solar fuels. Catalytic CO_2-reforming of CH_4 to chemical energy is a promising strategy for an efficient utilization of CO_2 as a renewable carbon source. 展开更多
关键词 thermochemical reactor CO2 UTILIZATION Radiation FLUX and temperature distribution CH4-reforming SYNGAS
下载PDF
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat 被引量:5
12
作者 Oleksandr Cherednichenko Serhiy Serbin 《Journal of Marine Science and Application》 CSCD 2018年第1期122-130,共9页
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel e... One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%. 展开更多
关键词 Liquefied natural GAS thermochemical heat recovery GAS TURBINE ENGINE DIESEL ENGINE Boil-off GAS EFFICIENCY
下载PDF
Thermochemical ablation of spherical cone during re-entry 被引量:4
13
作者 黄海明 吴林志 +1 位作者 王建新 杜善义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期18-22,共5页
Presents the use of the similar transform and potential theory for calculation of the bypass flow factor and pressure gradient and the analysis of the influence of bypass flow factor and pressure gradient on heat tran... Presents the use of the similar transform and potential theory for calculation of the bypass flow factor and pressure gradient and the analysis of the influence of bypass flow factor and pressure gradient on heat transfer is analyzed, and the distribution of nose cone ablation obtained by combining the controlling equations of boundary layer, the compatible relation of interface and the heat conduction of interior. 展开更多
关键词 nose cone thermochemical ablation re entry
下载PDF
Thermochemical Sulfate Reduction in the Tazhong District,Tarim Basin,Northeast China:Evidence from Formation Water and Natural Gas Geochemistry 被引量:4
14
作者 XIANG Caifu PANG Xiongqi +4 位作者 WANG Jianzhong LI Qiming WANG Hongping ZHOU Changqian YANG Haijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第2期358-369,共12页
Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS a... Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district. 展开更多
关键词 thermochemical sulfate reduction formation water chemistry natural gas geochemistry Central Uplift of Tarim Basin
下载PDF
Thermochemical studies on complex of [Sm(o-NBA)_3phen]_2 被引量:2
15
作者 肖圣雄 张建军 +3 位作者 李旭 李强国 任宁 李环 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期12-15,共4页
A ternary complex [Sm(o-NBA)3phen]2 (o-NBA: o-Nitrobenzoate; phen: 1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, molar conductance, and thermogravimetric analysis. The dissolution e... A ternary complex [Sm(o-NBA)3phen]2 (o-NBA: o-Nitrobenzoate; phen: 1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, molar conductance, and thermogravimetric analysis. The dissolution enthalpies of SmCl3·6H2O(s), o-HNBA(s) and phen·H2O(s) in mixed solvent (VHCl :VDMF :VDMSO=2:2:1) were determined by calorimetry at 298.15 K. The enthalpy change of the reaction was determined to be rHmΔ θ=252.49±1.60 kJ/mol. Using the relevant data in the literature and a thermochemical recycle... 展开更多
关键词 rare earth complex samarium chloride hexahydrate o-nitrobenzoic acid 1 10-PHENANTHROLINE thermochemical
下载PDF
Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries 被引量:5
16
作者 Ming-Xin Song Li-Jing Xie +6 位作者 Jia-Yao Cheng Zong-Lin Yi Ge Song Xiao-Yang Jia Jing-Peng Chen Quan-Gui Guo Cheng-Meng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期448-458,I0012,共12页
Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.Howe... Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications. 展开更多
关键词 Maleic anhydride esterified starch Dry strategy thermochemical evolution Hard carbon microspheres Lithium-ion batteries
下载PDF
La_(1-x)Ca_xMn_(1-y)Al_yO_3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields 被引量:3
17
作者 Lulu Wang Mohammad Al‐Mamun +3 位作者 Porun Liu Yun Wang Hua Gui Yang Huijun Zhao 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1079-1086,共8页
Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacit... Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacities,perovskite‐type redox catalysts have attracted significant attention in this regard.In the present study,the perovskite series La1‐xCaxMn1‐yAlyO3(x,y=0.2,0.4,0.6,or0.8)was fabricated using a modified Pechini method and comprehensively investigated to determine the applicability of these materials to solar H2production via two‐step thermochemical water splitting.The thermochemical redox behaviors of these perovskites were optimized by doping at either the A(Ca)or B(Al)sites over a broad range of substitution values,from0.2to0.8.Through this doping,a highly efficient perovskite(La0.6Ca0.4Mn0.6Al0.4O3)was developed,which yielded a remarkable H2production rate of429μmol/g during two‐step thermochemical H2O splitting,going between1400and1000°C.Moreover,the performance of the optimized perovskite was found to be eight times higher than that of the benchmark catalyst CeO2under the same experimental conditions.Furthermore,these perovskites also showed impressive catalytic stability during two‐step thermochemical cycling tests.These newly developed La1‐xCaxMn1‐yAlyO3redox catalysts appear to have great potential for future practical applications in thermochemical solar fuel production. 展开更多
关键词 Two‐step thermochemical route Water splitting Solar fuel Perovskite‐type redox catalyst Hydrogen production
下载PDF
Thermochemical Treatment——Technologies for Recovery and Utilisation of Materials 被引量:4
18
作者 Gerd Kley Rudolf Brenneis +1 位作者 Burkart Adamczyk Franz-Georg Simon 《过程工程学报》 CAS CSCD 北大核心 2006年第2期231-236,共6页
The arc furnace technology is an ideally suited process for the treatment of hazardous and problematic waste. The operation conditions of the furnace can be adapted for optimal transformation of the waste material inp... The arc furnace technology is an ideally suited process for the treatment of hazardous and problematic waste. The operation conditions of the furnace can be adapted for optimal transformation of the waste material input into raw materials and usable products. The process can significantly reduce the impact of contaminated wastes and industrial residues, and enable material conversion and separation. Thus, the products of the process have various applications. The capability of the process is illustrated with three examples, the treatment of bottom ash and filter ash from waste incineration plants, of stainless steel slags and of chromium-containing residues from the refractory industry. 展开更多
关键词 热化学处理 原料分离 耐火材料 不锈钢
下载PDF
Analysis of the Impact of Thermochemical Recuperation of Waste Heat on the Energy Efficiency of Gas Carriers 被引量:2
19
作者 Oleksandr Cherednichenko Vira Mitienkova 《Journal of Marine Science and Application》 CSCD 2020年第1期72-82,共11页
Enlarging the fleet of gas carriers would make it possible to respond to the growing demand for hydrocarbon gases,but it will increase carbon dioxide emissions.The International Maritime Organization(IMO)has developed... Enlarging the fleet of gas carriers would make it possible to respond to the growing demand for hydrocarbon gases,but it will increase carbon dioxide emissions.The International Maritime Organization(IMO)has developed the energy efficiency design index(EEDI)with the objective of carbon emission reduction for new ships.In this paper,thirty gas carriers transporting liquefied natural gas(LNG)and liquefied petroleum gas(LPG)and equipped with various types of main engines are considered.As shown by the calculation of the attained EEDI,2 of the 13 LPG carriers and 6 of the 17 LNG carriers under study do not comply with the EEDI requirements.To meet the stringent EEDI requirements,applying thermochemical regenerators(TCRs)fed by main engine exhaust gases is suggested.Mathematical modeling is applied to analyze the characteristics of the combined gas-turbine-electric and diesel-electric power plant with thermochemical recuperation of the exhaust gas heat.Utilizing TCR on gas carriers with engines fueled by syngas produced from boil-off gas(BOG)reduces the carbon content by 35%and provides the energy efficiency required by IMO without the use of other technologies. 展开更多
关键词 Liquefied natural gas Liquefied petroleum gas Gas carriers EEDI thermochemical heat recovery Gas-turbine engine Boil-off gas
下载PDF
Overview of Bio-Oil from Sewage Sludge by Direct Thermochemical Liquefaction Technology 被引量:1
20
作者 Jing Liu Xiaoxiong Zhang Guanyi Chen 《Journal of Sustainable Bioenergy Systems》 2012年第4期112-116,共5页
Sewage sludge is an unavoidable secondary pollution produced in the process of sewage treatment. At present traditional methods of treating sludge (e.g. landfill, incineration or land application) have some disadvanta... Sewage sludge is an unavoidable secondary pollution produced in the process of sewage treatment. At present traditional methods of treating sludge (e.g. landfill, incineration or land application) have some disadvantages and shortages. Direct thermochemical liquefaction of sludge is a new treatment method, which has the advantage of both treatment and energy recovery. Research progress and application prospect of sludge liquefaction technology are widely reported, typical liquefaction process with bio-oil production and its main influencing factors are introduced. Besides, the devel- opment of this process is illustrated, and resource and energy recovery of this technology are pointed out to be the ten- dency of sludge treatment in the future. 展开更多
关键词 BIO-OIL DIRECT thermochemical LIQUEFACTION SEWAGE Sludge
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部