The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendlin...The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions.展开更多
Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about ...Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles.展开更多
The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by...The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.展开更多
According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat sto...According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat storage is a considerable solution for this problem and thermochemical energy storage is the most promising way because of its great energy density and stability.However,this technology is not mature enough to be applied to the industry.The reactor is an important component in the thermochemical energy storage system where the charging and discharging process happens.In this paper,a spiral coil is proposed and used as a reactor in the thermochemical energy storage system.The advantages of the spiral coil include simple structure,small volume,and so on.To investigate the flow characteristics,the simulation was carried out based on energy-minimization multi-scale model(EMMS)and Eulerian two-phase model.CaCO_(3) particles were chosen as the reactants.Particle distribution was shown in the results.The gas initial velocity was set to 2 m·s^(-1),3 m·s^(-1),and 4 m·s^(-1).When the particles flowed in the coil,gravity,centrifugal force and drag force influenced their flow.With the Reynold numbers increasing,centrifugal and drag force got larger.Accumulation phenomenon existed in the coil and results showed with the gas velocity increasing,accumulation moved from the bottom to the outer wall of the coil.Besides,the accumulation phenomenon was stabilized whenφ>720°.Also due to the centrifugal force,a secondary flow formed,which means solid particles moved from the inside wall to the outside wall.This secondary flow could promote turbulence and mixing of particles and gas.In addition,when the particle volume fraction is reduced from 0.2 to 0.1,the accumulation at the bottom of the coil decreases,and the unevenness of the velocity distribution becomes larger.展开更多
Thermochemical heat storage is a promising technology for improving energy efficiency through the utilization of low-grade waste heat. The formation of a SrCl<sub>2</sub> ammine complex was selected as the...Thermochemical heat storage is a promising technology for improving energy efficiency through the utilization of low-grade waste heat. The formation of a SrCl<sub>2</sub> ammine complex was selected as the reaction system for the purpose of this study. Discharge characteristics were evaluated in a packed bed reactor for both the gas-solid reaction and the liquid-solid reaction. The average power of the gas-solid reaction was influenced by the pressure of the supplied ammonia gas, with greater powers being recorded at higher ammonia pressure. For the liquid-solid reaction, the obtained average power was comparable to that obtained for the gas-solid reaction at 0.2 MPa. Moreover, the lower heat transfer resistance in the reactor was observed, which was likely caused by the presence of liquid ammonia in the system. Finally, the short-term durability of the liquid-solid reaction system was demonstrated over 10 stable charge/discharge cycles.展开更多
Cigarette butts(CBs)are one of the most common types of litter in the world.Due to the toxic substances they contain,the waste generated poses a harmful risk to the environment,and therefore there is an urgent need fo...Cigarette butts(CBs)are one of the most common types of litter in the world.Due to the toxic substances they contain,the waste generated poses a harmful risk to the environment,and therefore there is an urgent need for alternative solutions to landfill storage.Thus,this work presents a possible revalorization of this waste material,which implies interesting environmental benefits.CBs were used as sacrificial templates for the preparation of CaO-based materials by impregnation with calcium and magnesium nitrates followed by flaming combustion.These materials presented enhanced porosity for their use in the Calcium Looping process applied either to thermochemical energy storage or CO_(2)capture applications.The influence of the concentration of Ca and Mg in the impregnating solutions on the multicycle reactivity of the samples was studied.An improved multicycle performance was obtained in terms of conversion for both applications.展开更多
Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used f...Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used for the first time as the matrix material for a THS system.Different salts were studied as thermochemical materials for their suitability in low-grade heat storage application driven by solar energy for an open system.Compositions were prepared by absorbing CaCl2,MgCl2,LiCl,LiNO3 and mixtures of these salts under a vacuum in an AAO matrix.Field Emission Scanning Electron Microscopy was used to examine the morphology of the produced AAO composites.Thermal energy storage capacities of the composites were characterized using a differential scanning calorimeter.Characterization analysis showed that anodized Al plates were suitable matrix materials for THS systems,and composite sorbent prepared with a 1:1 ratio LiCl/LiNO3 salt mixture had the highest energy value among all composites,with an energy density of 468.1 k J·kg-1.展开更多
Calcium carbonate is promising thermochemical heat storage material for next-generation solar power systems due to its high energy storage density,low cost,and high operation temperature.Researchers have tried to impr...Calcium carbonate is promising thermochemical heat storage material for next-generation solar power systems due to its high energy storage density,low cost,and high operation temperature.Researchers have tried to improve energy storage performances of calcium carbonate recently,but most researches focus on powders,which are not suitable for scalable applications.Here,novel granular porous calcium carbonate particles with very high solar absorptance,energy storage density,abrasive resistances,and energy storage rate are proposed for direct solar thermochemical heat storage.The average solar absorptance is improved by 234%compared with ordinary particles.Both cycle stability and abrasive resistances are excellent with almost no decay of energy storage density over 25 cycles nor apparent particle weight loss over 24 h of continuous operation insides a planetary ball mill.In addition,the decomposition temperature is reduced by 2.8%–5.6%while the reaction rate of heat storage is enhanced by 80%–205%depending on the CO_(2) partial pressure.The decomposition process of doped granular porous CaCO_(3) particles is found to involve three overlapping processes.This work provides new routes to achieve scalable direct solar thermochemical heat storage for next-generation high-temperature solar power systems.展开更多
By virtue of its long lifespan and outstanding storage intensity with near-zero heat loss,salt hydrate thermochemical energy storage(TES)materials provide a feasible option for the effective use of renewable energy an...By virtue of its long lifespan and outstanding storage intensity with near-zero heat loss,salt hydrate thermochemical energy storage(TES)materials provide a feasible option for the effective use of renewable energy and overcoming its unsynchronized supply and demand.Here,an activated porous carbon originating from the zeolite imidazolate framework(ZHCM)is fabricated and served as the carbon matrix for the LiOH TES material.The as-synthesized Li/ZHCM2-40 not only has excellent storage intensity(maximum 2414.2 kJ·kg^(−1))with low charging temperature,but also shows great hydration properties stemming from the ultrahigh surface area and hierarchical porous structure of ZHCM2.Besides,this composite material exhibits superior thermal conductivity,while its storage intensity is only attenuated by 10.2%after 15 times of consecutive charge-discharge process,revealing its outstanding cycle stability.And the numerical simulation results also demonstrate its superior heat transfer performance.The developed LiOH TES composite may afford a new avenue for efficient low-grade thermochemical energy storage and liberate the possibility of further exploration of metal organic frameworks derived porous carbon matrix in the future.展开更多
Recent advances in thermochemical storage technology have introduced a novel closed-loop thermal energy storage(TES)system,known as the heat battery(HB),which is believed to have great potential for aiding the energy ...Recent advances in thermochemical storage technology have introduced a novel closed-loop thermal energy storage(TES)system,known as the heat battery(HB),which is believed to have great potential for aiding the energy transition in the built environment because of its higher energy density and neglectable storage loss compared to conventional TES systems.In order to investigate the potential use cases of the HB and provide practical feedback for its further development,this research employs a simulation-based approach to analyze its influence on building performance in various use cases within Dutch residential buildings.Stakeholders including the homeowner,distribution system operator,and district heating system operator are identified,and a preliminary list of use cases is defined based on relevant literature and input from the HB developer.The simulation approach is conducted to predict key performance indicators for each stakeholder.The Kruskal-Wallis test was employed to sort and scrutinize the simulation outcomes and discern the significance of each use case element.The findings demonstrated that the HB holds the potential to diminish both the operational energy cost by up to 30%for the homeowners and the peak heating load transmitted from the building to the district heating system.展开更多
文摘The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions.
基金funded by the UKRI DTP Scholarship:EP/R513040/1.
文摘Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles.
基金Project(2010CB227103) supported by the National Basic Research Program of ChinaProjects(50930007,50836005) supported by the Key Program of the National Natural Science Foundation of ChinaProject(U1034005) supported by the National Natural Science Foundation of China
文摘The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.
基金the financial support provided by Natural Science Foundation of Jiangsu Province (BK20180936)the Initial Funding of Scientific Research for the Introduction of Talents (YJ2021-41)
文摘According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat storage is a considerable solution for this problem and thermochemical energy storage is the most promising way because of its great energy density and stability.However,this technology is not mature enough to be applied to the industry.The reactor is an important component in the thermochemical energy storage system where the charging and discharging process happens.In this paper,a spiral coil is proposed and used as a reactor in the thermochemical energy storage system.The advantages of the spiral coil include simple structure,small volume,and so on.To investigate the flow characteristics,the simulation was carried out based on energy-minimization multi-scale model(EMMS)and Eulerian two-phase model.CaCO_(3) particles were chosen as the reactants.Particle distribution was shown in the results.The gas initial velocity was set to 2 m·s^(-1),3 m·s^(-1),and 4 m·s^(-1).When the particles flowed in the coil,gravity,centrifugal force and drag force influenced their flow.With the Reynold numbers increasing,centrifugal and drag force got larger.Accumulation phenomenon existed in the coil and results showed with the gas velocity increasing,accumulation moved from the bottom to the outer wall of the coil.Besides,the accumulation phenomenon was stabilized whenφ>720°.Also due to the centrifugal force,a secondary flow formed,which means solid particles moved from the inside wall to the outside wall.This secondary flow could promote turbulence and mixing of particles and gas.In addition,when the particle volume fraction is reduced from 0.2 to 0.1,the accumulation at the bottom of the coil decreases,and the unevenness of the velocity distribution becomes larger.
文摘Thermochemical heat storage is a promising technology for improving energy efficiency through the utilization of low-grade waste heat. The formation of a SrCl<sub>2</sub> ammine complex was selected as the reaction system for the purpose of this study. Discharge characteristics were evaluated in a packed bed reactor for both the gas-solid reaction and the liquid-solid reaction. The average power of the gas-solid reaction was influenced by the pressure of the supplied ammonia gas, with greater powers being recorded at higher ammonia pressure. For the liquid-solid reaction, the obtained average power was comparable to that obtained for the gas-solid reaction at 0.2 MPa. Moreover, the lower heat transfer resistance in the reactor was observed, which was likely caused by the presence of liquid ammonia in the system. Finally, the short-term durability of the liquid-solid reaction system was demonstrated over 10 stable charge/discharge cycles.
基金supported by MCIN/AEI/10.13039/501100011033 and European Union Next Generation EU/PRTR(Nos.PDC2021121552-C21 and PID2022-140815OB-C22)Ministerio de Ciencia e Innovación(No.TED2021-131839B-C22)+1 种基金the Spanish Government Agency Ministerio de Ciencia,Innovación y Universidades(No.PRE2018-085866)the APOSTD program co-funded by ESF Investing in your future(No.CIAPOS/2021/67)。
文摘Cigarette butts(CBs)are one of the most common types of litter in the world.Due to the toxic substances they contain,the waste generated poses a harmful risk to the environment,and therefore there is an urgent need for alternative solutions to landfill storage.Thus,this work presents a possible revalorization of this waste material,which implies interesting environmental benefits.CBs were used as sacrificial templates for the preparation of CaO-based materials by impregnation with calcium and magnesium nitrates followed by flaming combustion.These materials presented enhanced porosity for their use in the Calcium Looping process applied either to thermochemical energy storage or CO_(2)capture applications.The influence of the concentration of Ca and Mg in the impregnating solutions on the multicycle reactivity of the samples was studied.An improved multicycle performance was obtained in terms of conversion for both applications.
基金supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No. 315M524)the Scientific Research Projects Coordination Unit of Istanbul University (Project No. 25427)
文摘Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used for the first time as the matrix material for a THS system.Different salts were studied as thermochemical materials for their suitability in low-grade heat storage application driven by solar energy for an open system.Compositions were prepared by absorbing CaCl2,MgCl2,LiCl,LiNO3 and mixtures of these salts under a vacuum in an AAO matrix.Field Emission Scanning Electron Microscopy was used to examine the morphology of the produced AAO composites.Thermal energy storage capacities of the composites were characterized using a differential scanning calorimeter.Characterization analysis showed that anodized Al plates were suitable matrix materials for THS systems,and composite sorbent prepared with a 1:1 ratio LiCl/LiNO3 salt mixture had the highest energy value among all composites,with an energy density of 468.1 k J·kg-1.
基金supported by the National Natural Science Foundation of China(Grant Nos.51820105010 and 52076106)the support from Natural Science Foundation of Jiangsu Province(Grant No.BK20202008).
文摘Calcium carbonate is promising thermochemical heat storage material for next-generation solar power systems due to its high energy storage density,low cost,and high operation temperature.Researchers have tried to improve energy storage performances of calcium carbonate recently,but most researches focus on powders,which are not suitable for scalable applications.Here,novel granular porous calcium carbonate particles with very high solar absorptance,energy storage density,abrasive resistances,and energy storage rate are proposed for direct solar thermochemical heat storage.The average solar absorptance is improved by 234%compared with ordinary particles.Both cycle stability and abrasive resistances are excellent with almost no decay of energy storage density over 25 cycles nor apparent particle weight loss over 24 h of continuous operation insides a planetary ball mill.In addition,the decomposition temperature is reduced by 2.8%–5.6%while the reaction rate of heat storage is enhanced by 80%–205%depending on the CO_(2) partial pressure.The decomposition process of doped granular porous CaCO_(3) particles is found to involve three overlapping processes.This work provides new routes to achieve scalable direct solar thermochemical heat storage for next-generation high-temperature solar power systems.
基金the Key-Area Research and Development Program of Guangdong Province(No.2020B0202010004)the National Natural Science Foundation of China(No.52071192)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(No.QYZDY-SSWJSC038).
文摘By virtue of its long lifespan and outstanding storage intensity with near-zero heat loss,salt hydrate thermochemical energy storage(TES)materials provide a feasible option for the effective use of renewable energy and overcoming its unsynchronized supply and demand.Here,an activated porous carbon originating from the zeolite imidazolate framework(ZHCM)is fabricated and served as the carbon matrix for the LiOH TES material.The as-synthesized Li/ZHCM2-40 not only has excellent storage intensity(maximum 2414.2 kJ·kg^(−1))with low charging temperature,but also shows great hydration properties stemming from the ultrahigh surface area and hierarchical porous structure of ZHCM2.Besides,this composite material exhibits superior thermal conductivity,while its storage intensity is only attenuated by 10.2%after 15 times of consecutive charge-discharge process,revealing its outstanding cycle stability.And the numerical simulation results also demonstrate its superior heat transfer performance.The developed LiOH TES composite may afford a new avenue for efficient low-grade thermochemical energy storage and liberate the possibility of further exploration of metal organic frameworks derived porous carbon matrix in the future.
基金This research is based on the project of Development of A Closed-loop TCM System,which belongs to the‘Integrale Energietransitie Bestaande Bouw’(IEBB).The IEBB was initiated by the Building and Technology Innovation Centre(BTIC)and is funded by Rijksdienst voor Ondernemend(RVO)Nederland.
文摘Recent advances in thermochemical storage technology have introduced a novel closed-loop thermal energy storage(TES)system,known as the heat battery(HB),which is believed to have great potential for aiding the energy transition in the built environment because of its higher energy density and neglectable storage loss compared to conventional TES systems.In order to investigate the potential use cases of the HB and provide practical feedback for its further development,this research employs a simulation-based approach to analyze its influence on building performance in various use cases within Dutch residential buildings.Stakeholders including the homeowner,distribution system operator,and district heating system operator are identified,and a preliminary list of use cases is defined based on relevant literature and input from the HB developer.The simulation approach is conducted to predict key performance indicators for each stakeholder.The Kruskal-Wallis test was employed to sort and scrutinize the simulation outcomes and discern the significance of each use case element.The findings demonstrated that the HB holds the potential to diminish both the operational energy cost by up to 30%for the homeowners and the peak heating load transmitted from the building to the district heating system.