期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Rational design of photofunctional dyes BODIPYs/aza-BODIPYs and applications for photocatalysis, photoelectric conversion and thermochromic materials
1
作者 Dongxiang Zhang Linxuan Liu +2 位作者 Xin Zhang Jie Lu Xin-Dong Jiang 《Resources Chemicals and Materials》 2024年第2期103-122,共20页
4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a... 4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials. 展开更多
关键词 BODIPYs/aza-BODIPYs Photofunctional dyes Photocatalysis Photoelectric conversion Thermochromic materials
下载PDF
Gold Nanoparticles/Thermochromic Composite Film on Screen-Printed Electrodes for Simultaneous Detection of Protein and Temperature
2
作者 Dorothy Araba Yakoba Agyapong Hanjia Jiang +2 位作者 Xingjia Ni Jingwen Wu Hongjuan Zeng 《Journal of Biomaterials and Nanobiotechnology》 2021年第2期7-19,共13页
In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The... In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The TM-AuNPs composited film had better sensitivity resulting from the gold nanoparticles amplification effect. A phase transition model analysis of TM-AuNPs films found that the TM-AuNPs films had three-phase transition intervals (<45℃, 45℃ to 80℃ and >80℃) which accommodated the temperature requirements for protein denaturation. When used to detect different concentrations of haemoglobin (Hb) solution, the TM-AuNPs modified SPCEs had a better sensitivity in detecting the different concentrations in comparison to TM and AuNP modified SPCEs which showed no clear sensitivity towards the different Hb concentrations. The dual detection and excellent sensitivity show a good application prospect for the study of the TM-AuNPs composite film. 展开更多
关键词 Screen-Printed Carbon Electrodes Gold Nanoparticles Thermochromic Material Simultaneous Detection of Proteins and Temperature
下载PDF
Discoloration mechanism,structures and recent applications of thermochromic materials via different methods:A review 被引量:17
3
作者 Youliang Cheng Xiaoqiang Zhang +2 位作者 Changqing Fang Jing Chen Zhen Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第12期2225-2234,共10页
Thermochromic material is a kind of smart material whose color will vary as the result of the phase transition caused by the temperature change. The characteristics of thermochromic materials are the memory functions ... Thermochromic material is a kind of smart material whose color will vary as the result of the phase transition caused by the temperature change. The characteristics of thermochromic materials are the memory functions to the temperature, having great potential applications in aerospace, military, anticounterfeiting technology, construction and other fields. In recent years, many kinds of thermochromic materials have been prepared by different methods and their discoloration mechanisms are various according to published literatures. In this paper, the classification, discoloration mechanism, preparation methods, application fields and development trend of thermochromic materials are reviewed. 展开更多
关键词 Thermochromic materials Discoloration mechanism Transformation temperature CLASSIFICATION
原文传递
Investigation on emissive properties of peroskite-type oxide LSMO with grating surface
4
作者 HUANG JinGuo XUAN YiMin LI Qiang 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第1期220-225,共6页
This paper aims to investigate thermal radiative characteristics of thermochrornic material La0.825Sr0.175MnO3(LSMO) with one-dimensional grating structured surfaces. The dielectric function of LSMO was calculated b... This paper aims to investigate thermal radiative characteristics of thermochrornic material La0.825Sr0.175MnO3(LSMO) with one-dimensional grating structured surfaces. The dielectric function of LSMO was calculated by K-K approach. Numerical calculation was conducted to obtain spectral emittance distribution of such surfaces with different structural parameters using the finite difference time domain (FDTD) method. It was found that the spectral emittance of LSMO structured surface exhib- ited the feature of selective enhancement due to the excitation of microcavity effect. The effects of structural parameters on spectral emittance indicated that the desired radiative enhancement could be achieved by the rational design of the structural parameters of grating. The temperature dependence of averaged emittance of LSMO was also calculated, The results showed that LSMO with grating structured surface had a better thermochromic performance compared with LSMO with smooth surface. 展开更多
关键词 GRATING thermochromic materials EMISSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部