期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
The Influences of Thermodynamic Characteristics on Aerodynamic Roughness Length over Land Surface 被引量:7
1
作者 张强 姚彤 +2 位作者 岳平 张立阳 曾剑 《Acta meteorologica Sinica》 SCIE 2013年第2期249-262,共14页
It has previously been shown that aerodynamic roughness length changes significantly along with near- surface atmospheric thermodynamic state; however, at present, this phenomenon remains poorly understood, and very l... It has previously been shown that aerodynamic roughness length changes significantly along with near- surface atmospheric thermodynamic state; however, at present, this phenomenon remains poorly understood, and very little research concerning this topic has been conducted. In this paper, by using the data of different underlying surfaces provided by the Experimental Co-observation and Integral Research in Semi-arid and Arid Regions over North China, aerodynamic roughness length (z0) values in stable, neutral, and unstable atmospheric stratifications are compared with one another, and the relationship between z0 and atmospheric thermodynamic stability (() is analyzed. It is found that z0 shows great differences among the stable, neutral, and unstable atmospheric thermodynamic states, with the difference in z0 values between the fully thermodynamic stable condition and the neutral condition reaching 60% of the mean z0. F^trthermore, for the wind speed range in which the wind data are less sensitive to z0, the surface z0 changes more significantly with (, and is highly correlated with both the Monin-Obukhov stability (4o) and the overall Richardson number (Rib), with both of their correlation coefficients greater than 0.71 and 0.47 in the stable and unstable atmospheric stratification, respectively. The empirical relation fitted with the experimental observations is quite consistent with the Zilitinkevich theoretical relation in the stable atmosphere, but the two are quite distinct and even show opposite variation tendencies in the unstable atmosphere. In application, however, verification of the empirical fitted relations by using the experimental data finds that the fitted relation is slightly more applicable than the Zilitinkevich theoretical relation in stable atmospheric stratification, but it is much more suitable than the Zilitinkevich relation in unstable atmospheric stratification. 展开更多
关键词 near-surface atmosphere thermodynamic characteristics aerodynamic roughness length Zil- itinkevich theoretical relationship parametric relations
原文传递
Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines 被引量:6
2
作者 ZENG Wen TONG Zhizhong +2 位作者 LI Songjing LI Hongzhou ZHANG Liang 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期559-565,共7页
关键词 thermodynamic characteristics flow-rate control valve scramjet engines fuel supply
原文传递
Modeling and simulation of twin-tube hydraulic shock absorber thermodynamic characteristics and sensitivity analysis of its influencing factors 被引量:1
3
作者 Yuewei Yu Leilei Zhao +1 位作者 Changcheng Zhou Lin Yang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第2期49-68,共20页
In order to find out the sensitivity of the thermophysical and structural parameters to the thermodynamic characteristics of twin-tube hydraulic shock absorbers,based on the bench test,a method for calculating the tim... In order to find out the sensitivity of the thermophysical and structural parameters to the thermodynamic characteristics of twin-tube hydraulic shock absorbers,based on the bench test,a method for calculating the time-varying rate of the external work on the shock absorber oil is proposed.And then,a thermodynamic model of the twin-tube hydraulic shock absorber is established by using the basic thermodynamic principles.By analyzing the influence of each parameter on the thermodynamic characteristics of the shock absorber,it can be seen that,the radius of the working cylinder outer wall has the greatest influence on the temperature rise of the shock absorber,followed by the thermal conductivity of the oil,the height of the oil,the heat transfer length of the cylinder barrel,the radius of the oil storage cylinder outer wall,the emissivity of the oil storage cylinder outer wall,the height of the nitrogen,the thermal conductivity of the nitrogen,the specific heat capacity of the oil,the density of the oil,the thermal conductivity of the cylinder,and the mass of the working oil.The kinematic viscosity of the oil has the least influence on the temperature rise of the shock absorber.The research can provide an effective theoretical guidance and reference for the design of the twin-tube hydraulic shock absorber. 展开更多
关键词 Twin-tube hydraulic shock absorber thermodynamic model thermodynamic characteristics influencing factors sensitivity analysis modeling and simulation
原文传递
Thermodynamic Characteristic and Phase Evolution in Immiscible Cr–Mo Binary Alloys
4
作者 Chong-Feng Sun Sheng-Qi Xi +2 位作者 Yue Zhang Xiao-Xue Zheng Jing-En Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1074-1081,共8页
This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 24... This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 243 and258 K, respectively, for different time. For comparative study, Cr–15Mo and Cr–62Mo powder mixtures were milled at 243 K for 18 h. Solid solution Cr(Mo) with body-centered cubic(bcc) crystal structure and amorphous Cr(Mo) alloy was obtained during MA process caused by high-energy ball milling. Based on the Miedema's model, the free-energy change for forming either a solid solution or an amorphous in Cr–Mo alloy system is positive but small at a temperature range between 200 and 300 K. The thermodynamical barrier for forming alloy in Cr–Mo system can be overcome when MA occurs at 243 K, and the supersaturated solid solution crystal nuclei with bcc structure form continually, and three supersaturated solid solutions of Cr–62Mo, Cr–35Mo and Cr–15Mo formed. Milling the Cr–35Mo powder mixture at 258 K, the solid solution Cr(Mo) forms firstly, and then the solid solution Cr(Mo) transforms into the amorphous Cr(Mo)alloy with a few of nanocrystallines when milling is prolonged. At higher milling temperature, it is favorable for the formation of the amorphous phase, as indicated by the thermodynamical calculation for immiscible Cr–Mo alloy system. 展开更多
关键词 thermodynamic characteristic Immiscible alloy system Phase evolution Solid solution Amorphous Mechanical alloying
原文传递
Thermal Analysis by Means of Differential Scanning Calorimetry of the Characteristic Thermodynamic Temperatures of a Cu-Zr-Al Bulk Metallic Glass
5
作者 Yanhong Li Bing Li +2 位作者 Xinhui Fan Ke Yang Xin Wang 《Fluid Dynamics & Materials Processing》 EI 2022年第1期71-80,共10页
In this study a Cu_(43)Zr_(48)Al_(9)bulk metallic glass prepared by the copper mold casting method is considered.In recent years,Cu-Zr-Al systems like this have enjoyed widespread attention due to their high strength,... In this study a Cu_(43)Zr_(48)Al_(9)bulk metallic glass prepared by the copper mold casting method is considered.In recent years,Cu-Zr-Al systems like this have enjoyed widespread attention due to their high strength,high hardness,high corrosion resistance and low cost.Here samples of this substance are studied using DSC(Differential scanning calorimetry)to determine the effect of different test conditions(heating rate,sample mass,sample specific surface area and sample crystal phase)on the characteristic thermodynamic temperature of the bulk metallic glass.Experimental results show that almost all of the five characteristic thermodynamic temperatures(T_(g),T_(x),T_(p),T_(m),T_(l))of this substance have higher values when the heating rate is increased.The influence of the variation of sample mass,sample specific surface area and sample crystal phase on the amorphous alloy characteristic temperature is very weak.lower the heating rate,the more developed the crystalline phase in the amorphous alloy will be. 展开更多
关键词 Cu-Zr-Al amorphous influence factors characteristic thermodynamic temperature DSC
下载PDF
Derivation of the thermal characteristics of mesoscale eddies
6
作者 CHEN Xuan PAN Jing +2 位作者 ZHENG Chongwei ZHANG Xi HE Ming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第3期8-13,共6页
This study aims at explaining the relationship between thermodynamic characteristics and direction of rotation of mesoscale eddies(MEs). The geometric characteristics of the MEs are under the following assumptions:... This study aims at explaining the relationship between thermodynamic characteristics and direction of rotation of mesoscale eddies(MEs). The geometric characteristics of the MEs are under the following assumptions: the structure of the MEs is symmetrical, and changes of oceanic physical variables are close to linear features in the radial direction in the ME regions. Based on these assumptions, by using primitive equations without friction under a cylindrical coordinate system, the thermodynamic characteristics of the MEs are derived, showing that the conventional relationship of warm anticyclonic eddies with high sea surface height(SSH) and cold cyclonic eddies with low SSH is not consistent with the SSH and sea surface temperature(SST) observations of eddies. The results show that the symmetrical form is an ideal approximation for the geometric characteristics of MEs. In consideration of the above assumptions, there are advantages for derivation of the characteristics of the MEs under a cylindrical coordinate. 展开更多
关键词 mesoscale eddies thermodynamic characteristics symmetry
下载PDF
A Synthetic Study of the Position Difference of the Southern Branch Trough of the Qinghai-Tibet Plateau Based on Objective Identification
7
作者 Ke Li Shunwu Zhou +2 位作者 Xia Shi Siyuan Chen Qianqian Song 《Journal of Geoscience and Environment Protection》 2021年第3期182-194,共13页
The southern branch trough (SBT) mainly appears in the winter half year (November to May of the following year), using the 4 times daily NCEP/NCAR re-analysis data nearly 41 years (1979-2019) to analyze the difference... The southern branch trough (SBT) mainly appears in the winter half year (November to May of the following year), using the 4 times daily NCEP/NCAR re-analysis data nearly 41 years (1979-2019) to analyze the differences of the SBT distribution of spatial location, frequency in winter and spring, then selects the “eastern type” and “western type” of the 10 most typical SBT, using simplified vertical vorticity tendency equation, using simplified vertical vorticity tendency equation to diagnosis of the SBT in power, heat, water vapor and wave energy in different positions. The results show that: 1) The location of the SBT is more eastward in winter, and more westward in spring. 2) The diagnosis results of the vorticity equation show that the vorticity of the southern branch of the “western type” is mainly contributed by advection term;the vorticity of the “eastern type” south branch is mainly contributed by the non-adiabatic heating term. 3) The SBT of the “eastern type” has more obvious vorticity advection than the southern branch of the “western type”, and the dynamic action is stronger. The “western type” SBT has stronger Q1, specific humidity advection and water vapor flux than the “eastern type” SBT, which is greatly affected by thermal action and water vapor. When the “eastern type” and “western type” SBT occur, the T-N wave activity flux appears obvious abnormal energy fluctuation propagation. 展开更多
关键词 The SBT WINTER Spring Full-Type Vertical Vorticity Inclination Equation Dynamic characteristics thermodynamic characteristics T-N Wave Activity Flux
下载PDF
NEW SCALING METHOD FOR COMPRESSOR MAPS USING AVERAGE INFINITESIMAL STAGE 被引量:3
8
作者 MA Wentong LIU Yongwen SU Ming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期24-28,共5页
The estimation of the precise performance of existing multistage axial-flow compressors of gas turbine engines is fast becoming a great concern, as the use of gas turbine engines in the power generation and in the mil... The estimation of the precise performance of existing multistage axial-flow compressors of gas turbine engines is fast becoming a great concern, as the use of gas turbine engines in the power generation and in the military industry increases, in order to reduce the analysis performance error of the traditional scaling method, a new scaling method for estimating the characteristics of multistage axial flow compressors is proposed. This novel method is based on experimental and partial data provided by engine manufacturers. Taking the effect of density-change into account, we introduce the average infinitesimal stage concept, and thereby divide the compression process into an infinite number of infinitesimal processes corresponding to infinitesimal stages. Subsequently, we adopt the corrected Reynolds analogy method for compressible flow calculation in order to ensure much better compliance with the similarity criterion, Validation checks show that the proposed method has enough precision to predict the off-design performance characteristics of multistage axial flow compressors. 展开更多
关键词 thermodynamic system characteristic maps Similarity extrapolation Axial flow compressors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部